Category of Alexandrov-discrete topological spaces #
This defines AlexDisc
, the category of Alexandrov-discrete topological spaces with continuous
maps, and proves it's equivalent to the category of preorders.
class
AlexandrovDiscreteSpace
(α : Type u_1)
extends TopologicalSpace α, AlexandrovDiscrete α :
Type u_1
Auxiliary typeclass to define the category of Alexandrov-discrete spaces. Do not use this
directly. Use AlexandrovDiscrete
instead.
- isOpen_univ : TopologicalSpace.IsOpen Set.univ
- isOpen_inter : ∀ (s t : Set α), TopologicalSpace.IsOpen s → TopologicalSpace.IsOpen t → TopologicalSpace.IsOpen (s ∩ t)
- isOpen_sUnion : ∀ (s : Set (Set α)), (∀ t ∈ s, TopologicalSpace.IsOpen t) → TopologicalSpace.IsOpen (⋃₀ s)
Instances
The category of Alexandrov-discrete spaces.
Instances For
Equations
- AlexDisc.instCoeSort = CategoryTheory.Bundled.coeSort
Equations
- α.instTopologicalSpace = AlexandrovDiscreteSpace.toTopologicalSpace
Equations
Equations
@[simp]
theorem
AlexDisc.coe_forgetToTop
(X : AlexDisc)
:
↑((CategoryTheory.forget₂ AlexDisc TopCat).obj X) = ↑X
Construct a bundled AlexDisc
from the underlying topological space.
Equations
- AlexDisc.of α = { α := α, str := AlexandrovDiscreteSpace.mk }
Instances For
@[simp]
theorem
AlexDisc.coe_of
(α : Type u_1)
[TopologicalSpace α]
[AlexandrovDiscrete α]
:
↑(AlexDisc.of α) = α
@[simp]
theorem
AlexDisc.forgetToTop_of
(α : Type u_1)
[TopologicalSpace α]
[AlexandrovDiscrete α]
:
(CategoryTheory.forget₂ AlexDisc TopCat).obj (AlexDisc.of α) = TopCat.of α
Constructs an equivalence between preorders from an order isomorphism between them.
Equations
- AlexDisc.Iso.mk e = { hom := ↑e, inv := ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
@[simp]
@[simp]
Sends a topological space to its specialisation order.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
alexDiscEquivPreord_functor :
alexDiscEquivPreord.functor = (CategoryTheory.forget₂ AlexDisc TopCat).comp topToPreord
@[simp]
theorem
alexDiscEquivPreord_inverse_obj
(X : Preord)
:
alexDiscEquivPreord.inverse.obj X = AlexDisc.of (Topology.WithUpperSet ↑X)
@[simp]
theorem
alexDiscEquivPreord_counitIso :
alexDiscEquivPreord.counitIso = CategoryTheory.NatIso.ofComponents
(fun (X : Preord) => Preord.Iso.mk (id (orderIsoSpecializationWithUpperSetTopology ↑X).symm))
@alexDiscEquivPreord.proof_5
@[simp]
theorem
alexDiscEquivPreord_unitIso :
alexDiscEquivPreord.unitIso = CategoryTheory.NatIso.ofComponents (fun (X : AlexDisc) => AlexDisc.Iso.mk (id (homeoWithUpperSetTopologyorderIso ↑X)))
@alexDiscEquivPreord.proof_4
@[simp]
theorem
alexDiscEquivPreord_inverse_map
{X✝ Y✝ : Preord}
(f : ↑X✝ →o ↑Y✝)
:
alexDiscEquivPreord.inverse.map f = Topology.WithUpperSet.map f