Documentation

ConNF.Counting.BaseCounting

Counting coding functions at level and 0 #

In this file, we show that there are less than μ coding functions at levels and 0.

Main declarations #

theorem ConNF.card_codingFunction_lt_of_card_supportOrbit_lt [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (ν : Cardinal.{u}) (hν : ν < Cardinal.mk ConNF.μ) (hβ : Cardinal.mk (ConNF.SupportOrbit β) < Cardinal.mk ConNF.μ) (hνS : ∀ (S : ConNF.Support β), Cardinal.mk { x : ConNF.TSet β // S.Supports x } ν) :
theorem ConNF.eq_bot_of_lt_of_isMin [ConNF.Params] [ConNF.Level] {β : ConNF.Λ} [ConNF.LeLevel β] (hβ : IsMin β) {δ : ConNF.TypeIndex} (hδ : δ < β) :
δ =
theorem ConNF.allPerm_of_basePerm_of_isMin [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.Λ} [ConNF.LeLevel β] (hβ : IsMin β) (π : ConNF.BasePerm) :
∃ (ρ : ConNF.AllPerm β), ρ (ConNF.Path.nil ↘.) = π
theorem ConNF.path_eq_of_isMin [ConNF.Params] [ConNF.Level] {β : ConNF.Λ} [ConNF.LeLevel β] (hβ : IsMin β) (A : β ) :
A = ConNF.Path.nil ↘.
theorem ConNF.card_codingFunction_lt_of_isMin [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.Λ} [ConNF.LeLevel β] (hβ : IsMin β) :