Counting coding functions at base type and level zero #
In this file, we show that there are less than μ
coding functions at levels ⊥
and 0
.
Main declarations #
ConNF.card_bot_codingFunction_lt
,ConNF.card_codingFunction_lt_of_isMin
: There are less thanμ
coding functions at levels⊥
and0
.
theorem
ConNF.card_codingFunction_lt_of_card_supportOrbit_lt
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.TypeIndex}
[ConNF.LeLevel β]
(ν : Cardinal.{u})
(hν : ν < Cardinal.mk ConNF.μ)
(hβ : Cardinal.mk (ConNF.SupportOrbit β) < Cardinal.mk ConNF.μ)
(hνS : ∀ (S : ConNF.Support β), Cardinal.mk { x : ConNF.TSet β // S.Supports x } ≤ ν)
:
Cardinal.mk (ConNF.CodingFunction β) < Cardinal.mk ConNF.μ
theorem
ConNF.card_bot_codingFunction_lt
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
:
Cardinal.mk (ConNF.CodingFunction ⊥) < Cardinal.mk ConNF.μ
theorem
ConNF.eq_bot_of_lt_of_isMin
[ConNF.Params]
[ConNF.Level]
{β : ConNF.Λ}
[ConNF.LeLevel ↑β]
(hβ : IsMin β)
{δ : ConNF.TypeIndex}
(hδ : δ < ↑β)
:
theorem
ConNF.allPerm_of_basePerm_of_isMin
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.Λ}
[ConNF.LeLevel ↑β]
(hβ : IsMin β)
(π : ConNF.BasePerm)
:
∃ (ρ : ConNF.AllPerm ↑β), ρᵁ (ConNF.Path.nil ↘.) = π
theorem
ConNF.path_eq_of_isMin
[ConNF.Params]
[ConNF.Level]
{β : ConNF.Λ}
[ConNF.LeLevel ↑β]
(hβ : IsMin β)
(A : ↑β ↝ ⊥)
:
theorem
ConNF.card_codingFunction_lt_of_isMin
[ConNF.Params]
[ConNF.Level]
[ConNF.CoherentData]
{β : ConNF.Λ}
[ConNF.LeLevel ↑β]
(hβ : IsMin β)
:
Cardinal.mk (ConNF.CodingFunction ↑β) < Cardinal.mk ConNF.μ