Documentation

ConNF.Counting.BaseCoding

Coding the base type #

In this file, we prove a consequence of freedom of action for : a base support can support at most 2 ^ #κ-many different sets of atoms under the action of base permutations.

Main declarations #

def ConNF.addAtom' [ConNF.Params] (S : ConNF.BaseSupport) (a : ConNF.Atom) :
ConNF.BaseSupport
Equations
Instances For
    theorem ConNF.addAtom'_atoms [ConNF.Params] (S : ConNF.BaseSupport) (a : ConNF.Atom) :
    theorem ConNF.addAtom'_nearLitters [ConNF.Params] (S : ConNF.BaseSupport) (a : ConNF.Atom) :
    theorem ConNF.addAtom'_atoms_rel [ConNF.Params] (S : ConNF.BaseSupport) (a : ConNF.Atom) (i : ConNF.κ) (b : ConNF.Atom) :
    (ConNF.addAtom' S a).rel i b S.rel i b b = a i = S.bound
    theorem ConNF.addAtom'_closed [ConNF.Params] (S : ConNF.BaseSupport) (a : ConNF.Atom) (hS : S.Closed) :
    (ConNF.addAtom' S a).Closed
    def ConNF.Support.ofBase [ConNF.Params] (S : ConNF.BaseSupport) :
    Equations
    Instances For
      @[simp]
      theorem ConNF.Support.ofBase_derivBot [ConNF.Params] (S : ConNF.BaseSupport) (A : ) :
      theorem ConNF.bot_preStrong [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] (S : ConNF.Support ) :
      S.PreStrong
      def ConNF.addAtom [ConNF.Params] (S : ConNF.BaseSupport) (a : ConNF.Atom) :
      Equations
      Instances For
        theorem ConNF.addAtom_derivBot [ConNF.Params] (S : ConNF.BaseSupport) (a : ConNF.Atom) (A : ) :
        theorem ConNF.addAtom_strong [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] (S : ConNF.BaseSupport) (a : ConNF.Atom) (hS : S.Closed) :
        (ConNF.addAtom S a).Strong
        @[simp]
        theorem ConNF.addAtom_convAtoms [ConNF.Params] (S : ConNF.BaseSupport) (a₁ a₂ : ConNF.Atom) (A : ) :
        ConNF.convAtoms (ConNF.addAtom S a₁) (ConNF.addAtom S a₂) A = fun (a₃ a₄ : ConNF.Atom) => a₃ = a₄ a₃ S a₃ = a₁ a₄ = a₂
        @[simp]
        theorem ConNF.addAtom_convNearLitters [ConNF.Params] (S : ConNF.BaseSupport) (a₁ a₂ : ConNF.Atom) (A : ) :
        ConNF.convNearLitters (ConNF.addAtom S a₁) (ConNF.addAtom S a₂) A = fun (N₁ N₂ : ConNF.NearLitter) => N₁ = N₂ N₁ S
        theorem ConNF.addAtom_sameSpecLe [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {S : ConNF.BaseSupport} {a₁ a₂ : ConNF.Atom} (ha₁ : a₁S) (ha₂ : a₂S) (ha : NS, a₁ N a₂ N) :
        theorem ConNF.addAtom_spec_eq_spec [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {S : ConNF.BaseSupport} {a₁ a₂ : ConNF.Atom} (ha₁ : a₁S) (ha₂ : a₂S) (ha : NS, a₁ N a₂ N) :
        (ConNF.addAtom S a₁).spec = (ConNF.addAtom S a₂).spec
        theorem ConNF.exists_swap [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {S : ConNF.BaseSupport} (h : S.Closed) {a₁ a₂ : ConNF.Atom} (ha₁ : a₁S) (ha₂ : a₂S) (ha : NS, a₁ N a₂ N) :
        ∃ (π : ConNF.BasePerm), π S = S π a₁ = a₂
        theorem ConNF.mem_iff_mem_of_supports [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {S : ConNF.BaseSupport} (h : S.Closed) {s : Set ConNF.Atom} (hs : ∀ (π : ConNF.BasePerm), π S = Sπ s = s) {a₁ a₂ : ConNF.Atom} (h₁ : a₁S) (h₂ : a₂S) (ha : NS, a₁ N a₂ N) :
        a₁ s a₂ s
        • atoms : Set ConNF.κ
        • nearLitters : Set ConNF.κ
        • outside : Prop
        Instances For
          def ConNF.information [ConNF.Params] (S : ConNF.BaseSupport) (s : Set ConNF.Atom) :
          ConNF.Information
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem ConNF.subset_of_information_eq [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {S : ConNF.BaseSupport} (hS : S.Closed) {s t : Set ConNF.Atom} (hs : ∀ (π : ConNF.BasePerm), π S = Sπ s = s) (ht : ∀ (π : ConNF.BasePerm), π S = Sπ t = t) (h : ConNF.information S s = ConNF.information S t) :
            s t
            theorem ConNF.eq_of_information_eq [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {S : ConNF.BaseSupport} (hS : S.Closed) {s t : Set ConNF.Atom} (hs : ∀ (π : ConNF.BasePerm), π S = Sπ s = s) (ht : ∀ (π : ConNF.BasePerm), π S = Sπ t = t) (h : ConNF.information S s = ConNF.information S t) :
            s = t
            theorem ConNF.card_supports_le_of_closed' [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {S : ConNF.BaseSupport} (hS : S.Closed) :
            Cardinal.mk { s : Set ConNF.Atom // ∀ (π : ConNF.BasePerm), π S = Sπ s = s } Cardinal.mk ConNF.Information
            def ConNF.informationEquiv [ConNF.Params] :
            ConNF.Information Set ConNF.κ × Set ConNF.κ × Prop
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem ConNF.card_supports_le_of_closed [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {S : ConNF.BaseSupport} (hS : S.Closed) :
              Cardinal.mk { s : Set ConNF.Atom // ∀ (π : ConNF.BasePerm), π S = Sπ s = s } 2 ^ Cardinal.mk ConNF.κ
              theorem ConNF.BaseSupport.interference_small [ConNF.Params] (S : ConNF.BaseSupport) :
              ConNF.Small {a : ConNF.Atom | ∃ (N₁ : ConNF.NearLitter) (N₂ : ConNF.NearLitter), N₁ S N₂ S a ConNF.interference N₁ N₂}
              theorem ConNF.card_supports_le [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] (S : ConNF.BaseSupport) :
              Cardinal.mk { s : Set ConNF.Atom // ∀ (π : ConNF.BasePerm), π S = Sπ s = s } 2 ^ Cardinal.mk ConNF.κ