Documentation

ConNF.Counting.Recode

Recoding #

In this file, we show that all coding functions of level β > γ can be expressed in terms of a set of a particular class of γ-coding functions, called raised coding functions.

Main declarations #

def ConNF.Combination [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (x : ConNF.TSet β) (S : ConNF.Support β) (χs : Set (ConNF.CodingFunction β)) :
Equations
Instances For
    theorem ConNF.combination_unique [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) {x₁ x₂ : ConNF.TSet β} {S : ConNF.Support β} {χs : Set (ConNF.CodingFunction β)} (hx₁ : ConNF.Combination x₁ S χs) (hx₂ : ConNF.Combination x₂ S χs) :
    x₁ = x₂
    theorem ConNF.Combination.smul [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) {x : ConNF.TSet β} {S : ConNF.Support β} {χs : Set (ConNF.CodingFunction β)} (h : ConNF.Combination x S χs) (ρ : ConNF.AllPerm β) :
    ConNF.Combination (ρ x) (ρ S) χs
    inductive ConNF.RaisedRel [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (s : Set (ConNF.CodingFunction β)) (o : ConNF.SupportOrbit β) :
    Rel (ConNF.Support β) (ConNF.TSet β)
    Instances For
      theorem ConNF.raisedRel_coinjective [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (s : Set (ConNF.CodingFunction β)) (o : ConNF.SupportOrbit β) :
      (ConNF.RaisedRel s o).Coinjective
      theorem ConNF.raisedRel_dom_nonempty [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) {s : Set (ConNF.CodingFunction β)} {o : ConNF.SupportOrbit β} (hso : ∀ (S : ConNF.Support β), S.orbit = o∃ (x : ConNF.TSet β), ConNF.Combination x S s S.Supports x) :
      (ConNF.RaisedRel s o).dom.Nonempty
      theorem ConNF.supports_of_raisedRel [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) {s : Set (ConNF.CodingFunction β)} {o : ConNF.SupportOrbit β} (hso : ∀ (S : ConNF.Support β), S.orbit = o∃ (x : ConNF.TSet β), ConNF.Combination x S s S.Supports x) {S : ConNF.Support β} {x : ConNF.TSet β} :
      ConNF.RaisedRel s o S xS.Supports x
      theorem ConNF.orbit_eq_of_mem_dom_raisedRel [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (s : Set (ConNF.CodingFunction β)) (o : ConNF.SupportOrbit β) {S : ConNF.Support β} (hS : S (ConNF.RaisedRel s o).dom) :
      S.orbit = o
      theorem ConNF.smul_raisedRel [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (s : Set (ConNF.CodingFunction β)) (o : ConNF.SupportOrbit β) {S : ConNF.Support β} {x : ConNF.TSet β} (h : ConNF.RaisedRel s o S x) (ρ : ConNF.AllPerm β) :
      ConNF.RaisedRel s o (ρ S) (ρ x)
      def ConNF.raisedCodingFunction [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (s : Set (ConNF.CodingFunction β)) (o : ConNF.SupportOrbit β) (hso : ∀ (S : ConNF.Support β), S.orbit = o∃ (x : ConNF.TSet β), ConNF.Combination x S s S.Supports x) :
      Equations
      Instances For
        theorem ConNF.scoderiv_supports_singleton [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (S : ConNF.Support γ) (y : ConNF.TSet γ) (h : S.Supports y) :
        (S ).Supports (ConNF.singleton y)
        theorem ConNF.raisedSingleton_supports [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (S : ConNF.Support β) (y : ConNF.TSet γ) :
        (S + ConNF.designatedSupport y ).Supports (ConNF.singleton y)
        def ConNF.raisedSingleton [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (S : ConNF.Support β) (y : ConNF.TSet γ) :
        Equations
        Instances For
          theorem ConNF.combination_raisedSingleton [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (x : ConNF.TSet β) (S : ConNF.Support β) (hxS : S.Supports x) :
          ConNF.Combination x S (ConNF.raisedSingleton S '' {y : ConNF.TSet γ | y ∈[] x})
          def ConNF.RaisedSingleton [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) :
          Equations
          Instances For
            theorem ConNF.exists_combination_raisedSingleton [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (χ : ConNF.CodingFunction β) :
            ∃ (s : Set (ConNF.RaisedSingleton )) (o : ConNF.SupportOrbit β) (hso : ∀ (S : ConNF.Support β), S.orbit = o∃ (x : ConNF.TSet β), ConNF.Combination x S (Subtype.val '' s) S.Supports x), χ = ConNF.raisedCodingFunction (Subtype.val '' s) o hso
            structure ConNF.RaisedSingletonData [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] (β γ : ConNF.Λ) [ConNF.LeLevel β] [ConNF.LeLevel γ] :
            Instances For
              def ConNF.RaisedSingletonData.mk' [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (S : ConNF.Support β) (y : ConNF.TSet γ) :
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem ConNF.RaisedSingletonData.mk'_eq_mk' [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) {S₁ S₂ : ConNF.Support β} {y₁ y₂ : ConNF.TSet γ} (h : ConNF.RaisedSingletonData.mk' S₁ y₁ = ConNF.RaisedSingletonData.mk' S₂ y₂) :
                ConNF.raisedSingleton S₁ y₁ = ConNF.raisedSingleton S₂ y₂
                theorem ConNF.card_raisedSingleton_lt' [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) :
                def ConNF.raisedSingletonDataEquiv [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] (β γ : ConNF.Λ) [ConNF.LeLevel β] [ConNF.LeLevel γ] :
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem ConNF.card_raisedSingleton_lt [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β γ : ConNF.Λ} [ConNF.LeLevel β] [ConNF.LeLevel γ] (hγ : γ < β) (h₁ : Cardinal.mk (ConNF.SupportOrbit β) < Cardinal.mk ConNF.μ) (h₂ : δ < β, ∀ [inst : ConNF.LeLevel δ], Cardinal.mk (ConNF.CodingFunction δ) < Cardinal.mk ConNF.μ) :