Documentation

Mathlib.LinearAlgebra.LinearIndependent

Linear independence #

This file defines linear independence in a module or vector space.

It is inspired by Isabelle/HOL's linear algebra, and hence indirectly by HOL Light.

We define LinearIndependent R v as Function.Injective (Finsupp.linearCombination R v). Here Finsupp.linearCombination is the linear map sending a function f : ι →₀ R with finite support to the linear combination of vectors from v with these coefficients. Then we prove that several other statements are equivalent to this one, including ker (Finsupp.linearCombination R v) = ⊥ and some versions with explicitly written linear combinations.

Main definitions #

All definitions are given for families of vectors, i.e. v : ι → M where M is the module or vector space and ι : Type* is an arbitrary indexing type.

Main statements #

We prove several specialized tests for linear independence of families of vectors and of sets of vectors.

In many cases we additionally provide dot-style operations (e.g., LinearIndependent.union) to make the linear independence tests usable as hv.insert ha etc.

We also prove that, when working over a division ring, any family of vectors includes a linear independent subfamily spanning the same subspace.

Implementation notes #

We use families instead of sets because it allows us to say that two identical vectors are linearly dependent.

If you want to use sets, use the family (fun x ↦ x : s → M) given a set s : Set M. The lemmas LinearIndependent.to_subtype_range and LinearIndependent.of_subtype_range connect those two worlds.

TODO #

Rework proofs to hold in semirings, by avoiding the path through ker (Finsupp.linearCombination R v) = ⊥.

Tags #

linearly dependent, linear dependence, linearly independent, linear independence

def LinearIndependent {ι : Type u'} (R : Type u_2) {M : Type u_4} (v : ιM) [Semiring R] [AddCommMonoid M] [Module R M] :

LinearIndependent R v states the family of vectors v is linearly independent over R.

Equations
Instances For

    Delaborator for LinearIndependent that suggests pretty printing with type hints in case the family of vectors is over a Set.

    Type hints look like LinearIndependent fun (v : ↑s) => ↑v or LinearIndependent (ι := ↑s) f, depending on whether the family is a lambda expression or not.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem LinearIndependent.injective {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] (hv : LinearIndependent R v) :
      theorem LinearIndependent.ne_zero {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] (i : ι) (hv : LinearIndependent R v) :
      v i 0
      theorem linearIndependent_empty_type {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [IsEmpty ι] :
      theorem linearIndependent_empty (R : Type u_2) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] :
      LinearIndependent R fun (x : ) => x
      theorem LinearIndependent.comp {ι : Type u'} {ι' : Type u_1} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (h : LinearIndependent R v) (f : ι'ι) (hf : Function.Injective f) :

      A subfamily of a linearly independent family (i.e., a composition with an injective map) is a linearly independent family.

      theorem LinearIndependent.restrict_scalars {ι : Type u'} {R : Type u_2} {K : Type u_3} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring K] [SMulWithZero R K] [Module K M] [IsScalarTower R K M] (hinj : Function.Injective fun (r : R) => r 1) (li : LinearIndependent K v) :

      A set of linearly independent vectors in a module M over a semiring K is also linearly independent over a subring R of K. The implementation uses minimal assumptions about the relationship between R, K and M. The version where K is an R-algebra is LinearIndependent.restrict_scalars_algebras.

      @[deprecated linearIndependent_iff_injective_linearCombination (since := "2024-08-29")]

      Alias of linearIndependent_iff_injective_linearCombination.

      @[deprecated LinearIndependent.injective_linearCombination (since := "2024-08-29")]
      theorem LinearIndependent.injective_total {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] :

      Alias of the forward direction of linearIndependent_iff_injective_linearCombination.


      Alias of the forward direction of linearIndependent_iff_injective_linearCombination.

      theorem linearIndependent_iffₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] :
      LinearIndependent R v ∀ (l₁ l₂ : ι →₀ R), (Finsupp.linearCombination R v) l₁ = (Finsupp.linearCombination R v) l₂l₁ = l₂
      theorem linearIndependent_iff'ₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] :
      LinearIndependent R v ∀ (s : Finset ι) (f g : ιR), is, f i v i = is, g i v iis, f i = g i
      theorem linearIndependent_iff''ₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] :
      LinearIndependent R v ∀ (s : Finset ι) (f g : ιR), (∀ is, f i = g i)is, f i v i = is, g i v i∀ (i : ι), f i = g i
      theorem not_linearIndependent_iffₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] :
      ¬LinearIndependent R v ∃ (s : Finset ι) (f : ιR) (g : ιR), is, f i v i = is, g i v i is, f i g i
      theorem Fintype.linearIndependent_iffₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Fintype ι] :
      LinearIndependent R v ∀ (f g : ιR), i : ι, f i v i = i : ι, g i v i∀ (i : ι), f i = g i
      theorem Fintype.linearIndependent_iff'ₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Fintype ι] [DecidableEq ι] :
      LinearIndependent R v Function.Injective ((LinearMap.lsum R (fun (x : ι) => R) ) fun (i : ι) => LinearMap.id.smulRight (v i))

      A finite family of vectors v i is linear independent iff the linear map that sends c : ι → R to ∑ i, c i • v i is injective.

      theorem Fintype.not_linearIndependent_iffₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Fintype ι] :
      ¬LinearIndependent R v ∃ (f : ιR) (g : ιR), i : ι, f i v i = i : ι, g i v i ∃ (i : ι), f i g i
      theorem LinearIndependent.pair_iffₛ {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {x y : M} :
      LinearIndependent R ![x, y] ∀ (s t s' t' : R), s x + t y = s' x + t' ys = s' t = t'
      theorem LinearIndependent.eq_of_pair {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {x y : M} (h : LinearIndependent R ![x, y]) {s t s' t' : R} (h' : s x + t y = s' x + t' y) :
      s = s' t = t'
      theorem LinearIndependent.eq_zero_of_pair' {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {x y : M} (h : LinearIndependent R ![x, y]) {s t : R} (h' : s x = t y) :
      s = 0 t = 0
      theorem LinearIndependent.eq_zero_of_pair {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {x y : M} (h : LinearIndependent R ![x, y]) {s t : R} (h' : s x + t y = 0) :
      s = 0 t = 0
      theorem linearIndependent_iff_finset_linearIndependent {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] :

      A family is linearly independent if and only if all of its finite subfamily is linearly independent.

      theorem LinearIndependent.coe_range {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (i : LinearIndependent R v) :
      theorem Submodule.range_ker_disjoint {ι : Type u'} {R : Type u_2} {M : Type u_4} {M' : Type u_5} {v : ιM} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] {f : M →ₗ[R] M'} (hv : LinearIndependent R (f v)) :

      If v is an injective family of vectors such that f ∘ v is linearly independent, then v spans a submodule disjoint from the kernel of f

      theorem LinearIndependent.map_of_injective_injectiveₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] {R' : Type u_6} {M' : Type u_7} [Semiring R'] [AddCommMonoid M'] [Module R' M'] (hv : LinearIndependent R v) (i : R'R) (j : M →+ M') (hi : Function.Injective i) (hj : Function.Injective j) (hc : ∀ (r : R') (m : M), j (i r m) = r j m) :

      If M / R and M' / R' are modules, i : R' → R is a map, j : M →+ M' is a monoid map, such that they are both injective, and compatible with the scalar multiplications on M and M', then j sends linearly independent families of vectors to linearly independent families of vectors. As a special case, taking R = R' it is LinearIndependent.map'.

      theorem LinearIndependent.of_comp {ι : Type u'} {R : Type u_2} {M : Type u_4} {M' : Type u_5} {v : ιM} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') (hfv : LinearIndependent R (f v)) :

      If the image of a family of vectors under a linear map is linearly independent, then so is the original family.

      theorem LinearMap.linearIndependent_iff_of_injOn {ι : Type u'} {R : Type u_2} {M : Type u_4} {M' : Type u_5} {v : ιM} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') (hf_inj : Set.InjOn f (Submodule.span R (Set.range v))) :

      If f is a linear map injective on the span of the range of v, then the family f ∘ v is linearly independent if and only if the family v is linearly independent. See LinearMap.linearIndependent_iff_of_disjoint for the version with Set.InjOn replaced by Disjoint when working over a ring.

      theorem LinearIndependent.map_injOn {ι : Type u'} {R : Type u_2} {M : Type u_4} {M' : Type u_5} {v : ιM} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (hv : LinearIndependent R v) (f : M →ₗ[R] M') (hf_inj : Set.InjOn f (Submodule.span R (Set.range v))) :

      If a linear map is injective on the span of a family of linearly independent vectors, then the family stays linearly independent after composing with the linear map. See LinearIndependent.map for the version with Set.InjOn replaced by Disjoint when working over a ring.

      theorem linearIndependent_of_subsingleton {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Subsingleton R] :
      theorem linearIndependent_equiv {ι : Type u'} {ι' : Type u_1} {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (e : ι ι') {f : ι'M} :
      theorem linearIndependent_equiv' {ι : Type u'} {ι' : Type u_1} {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (e : ι ι') {f : ι'M} {g : ιM} (h : f e = g) :
      theorem linearIndependent_subtype_range {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_6} {f : ιM} (hf : Function.Injective f) :
      theorem LinearIndependent.of_subtype_range {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_6} {f : ιM} (hf : Function.Injective f) :

      Alias of the forward direction of linearIndependent_subtype_range.

      theorem LinearIndependent.to_subtype_range {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_6} {f : ιM} (hf : LinearIndependent R f) :
      theorem LinearIndependent.to_subtype_range' {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_6} {f : ιM} (hf : LinearIndependent R f) {t : Set M} (ht : Set.range f = t) :
      theorem LinearIndependent.image_of_comp {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_6} {ι' : Type u_7} (s : Set ι) (f : ιι') (g : ι'M) (hs : LinearIndependent R fun (x : s) => g (f x)) :
      LinearIndependent R fun (x : (f '' s)) => g x
      theorem LinearIndependent.image {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_6} {s : Set ι} {f : ιM} (hs : LinearIndependent R fun (x : s) => f x) :
      LinearIndependent R fun (x : (f '' s)) => x
      theorem LinearIndependent.group_smul {ι : Type u'} {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {G : Type u_6} [hG : Group G] [DistribMulAction G R] [DistribMulAction G M] [IsScalarTower G R M] [SMulCommClass G R M] {v : ιM} (hv : LinearIndependent R v) (w : ιG) :
      theorem LinearIndependent.units_smul {ι : Type u'} {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {v : ιM} (hv : LinearIndependent R v) (w : ιRˣ) :
      theorem linearIndependent_image {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_6} {s : Set ι} {f : ιM} (hf : Set.InjOn f s) :
      (LinearIndependent R fun (x : s) => f x) LinearIndependent R fun (x : (f '' s)) => x
      theorem linearIndependent_span {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hs : LinearIndependent R v) :
      LinearIndependent R fun (i : ι) => v i,

      Every finite subset of a linearly independent set is linearly independent.

      The following lemmas use the subtype defined by a set in M as the index set ι.

      theorem linearIndependent_comp_subtypeₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] {s : Set ι} :
      LinearIndependent (ι := s) R (v Subtype.val) fFinsupp.supported R R s, gFinsupp.supported R R s, (Finsupp.linearCombination R v) f = (Finsupp.linearCombination R v) gf = g
      theorem linearDependent_comp_subtype'ₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] {s : Set ι} :
      theorem linearDependent_comp_subtypeₛ {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] {s : Set ι} :
      ¬LinearIndependent (ι := s) R (v Subtype.val) ∃ (f : ι →₀ R) (g : ι →₀ R), f Finsupp.supported R R s g Finsupp.supported R R s if.support, f i v i = ig.support, g i v i f g

      A version of linearDependent_comp_subtype'ₛ with Finsupp.linearCombination unfolded.

      theorem linearIndependent_subtypeₛ {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {s : Set M} :
      (LinearIndependent R fun (x : s) => x) fFinsupp.supported R R s, gFinsupp.supported R R s, (Finsupp.linearCombination R id) f = (Finsupp.linearCombination R id) gf = g
      theorem linearIndependent_restrict_iff {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] {s : Set ι} :
      LinearIndependent (ι := s) R (s.restrict v) Function.Injective (Finsupp.linearCombinationOn ι M R v s)
      theorem LinearIndependent.restrict_of_comp_subtype {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] {s : Set ι} (hs : LinearIndependent (ι := s) R (v Subtype.val)) :
      LinearIndependent (ι := s) R (s.restrict v)
      theorem LinearIndependent.mono {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {t s : Set M} (h : t s) (hs : LinearIndependent R fun (x : s) => x) :
      LinearIndependent R fun (x : t) => x
      theorem linearIndependent_of_finite {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) (H : ts, t.FiniteLinearIndependent R fun (x : t) => x) :
      LinearIndependent R fun (x : s) => x
      theorem linearIndependent_iUnion_of_directed {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {η : Type u_6} {s : ηSet M} (hs : Directed (fun (x1 x2 : Set M) => x1 x2) s) (h : ∀ (i : η), LinearIndependent R fun (x : (s i)) => x) :
      LinearIndependent R fun (x : (⋃ (i : η), s i)) => x
      theorem linearIndependent_sUnion_of_directed {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {s : Set (Set M)} (hs : DirectedOn (fun (x1 x2 : Set M) => x1 x2) s) (h : as, LinearIndependent R Subtype.val) :
      LinearIndependent R fun (x : (⋃₀ s)) => x
      theorem linearIndependent_biUnion_of_directed {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {η : Type u_6} {s : Set η} {t : ηSet M} (hs : DirectedOn (t ⁻¹'o fun (x1 x2 : Set M) => x1 x2) s) (h : as, LinearIndependent R fun (x : (t a)) => x) :
      LinearIndependent R fun (x : (⋃ as, t a)) => x
      theorem LinearIndependent.eq_of_smul_apply_eq_smul_apply {ι : Type u'} {R : Type u_2} [Semiring R] {M : Type u_6} [AddCommMonoid M] [Module R M] {v : ιM} (li : LinearIndependent R v) (c d : R) (i j : ι) (hc : c 0) (h : c v i = d v j) :
      i = j

      Linear independent families are injective, even if you multiply either side.

      The following lemmas use the subtype defined by a set in M as the index set ι.

      theorem LinearIndependent.disjoint_span_image {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) {s t : Set ι} (hs : Disjoint s t) :
      theorem LinearIndependent.not_mem_span_image {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] (hv : LinearIndependent R v) {s : Set ι} {x : ι} (h : xs) :
      v xSubmodule.span R (v '' s)
      theorem LinearIndependent.linearCombination_ne_of_not_mem_support {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] (hv : LinearIndependent R v) {x : ι} (f : ι →₀ R) (h : xf.support) :
      @[deprecated LinearIndependent.linearCombination_ne_of_not_mem_support (since := "2024-08-29")]
      theorem LinearIndependent.total_ne_of_not_mem_support {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] (hv : LinearIndependent R v) {x : ι} (f : ι →₀ R) (h : xf.support) :

      Alias of LinearIndependent.linearCombination_ne_of_not_mem_support.

      def LinearIndependent.linearCombinationEquiv {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) :

      Canonical isomorphism between linear combinations and the span of linearly independent vectors.

      Equations
      Instances For
        @[simp]
        theorem LinearIndependent.linearCombinationEquiv_symm_apply {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (a✝ : (Submodule.span R (Set.range v))) :
        hv.linearCombinationEquiv.symm a✝ = ((LinearEquiv.ofInjective (LinearMap.codRestrict (Submodule.span R (Set.range v)) (Finsupp.linearCombination R v) ) ).toEquiv.trans (LinearEquiv.ofTop (LinearMap.range (LinearMap.codRestrict (Submodule.span R (Set.range v)) (Finsupp.linearCombination R v) )) ).toEquiv).invFun a✝
        @[deprecated LinearIndependent.linearCombinationEquiv (since := "2024-08-29")]
        def LinearIndependent.totalEquiv {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) :

        Alias of LinearIndependent.linearCombinationEquiv.


        Canonical isomorphism between linear combinations and the span of linearly independent vectors.

        Equations
        Instances For
          @[simp]
          theorem LinearIndependent.linearCombinationEquiv_apply_coe {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (l : ι →₀ R) :
          (hv.linearCombinationEquiv l) = (Finsupp.linearCombination R v) l
          @[deprecated LinearIndependent.linearCombinationEquiv_apply_coe (since := "2024-08-29")]
          theorem LinearIndependent.totalEquiv_apply_coe {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (l : ι →₀ R) :
          (hv.linearCombinationEquiv l) = (Finsupp.linearCombination R v) l

          Alias of LinearIndependent.linearCombinationEquiv_apply_coe.

          def LinearIndependent.repr {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) :

          Linear combination representing a vector in the span of linearly independent vectors.

          Given a family of linearly independent vectors, we can represent any vector in their span as a linear combination of these vectors. These are provided by this linear map. It is simply one direction of LinearIndependent.linearCombinationEquiv.

          Equations
          • hv.repr = hv.linearCombinationEquiv.symm
          Instances For
            @[simp]
            theorem LinearIndependent.linearCombination_repr {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (x : (Submodule.span R (Set.range v))) :
            (Finsupp.linearCombination R v) (hv.repr x) = x
            @[deprecated LinearIndependent.linearCombination_repr (since := "2024-08-29")]
            theorem LinearIndependent.total_repr {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (x : (Submodule.span R (Set.range v))) :
            (Finsupp.linearCombination R v) (hv.repr x) = x

            Alias of LinearIndependent.linearCombination_repr.

            theorem LinearIndependent.linearCombination_comp_repr {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) :
            Finsupp.linearCombination R v ∘ₗ hv.repr = (Submodule.span R (Set.range v)).subtype
            @[deprecated LinearIndependent.linearCombination_comp_repr (since := "2024-08-29")]
            theorem LinearIndependent.total_comp_repr {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) :
            Finsupp.linearCombination R v ∘ₗ hv.repr = (Submodule.span R (Set.range v)).subtype

            Alias of LinearIndependent.linearCombination_comp_repr.

            theorem LinearIndependent.repr_ker {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) :
            theorem LinearIndependent.repr_range {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) :
            theorem LinearIndependent.repr_eq {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) {l : ι →₀ R} {x : (Submodule.span R (Set.range v))} (eq : (Finsupp.linearCombination R v) l = x) :
            hv.repr x = l
            theorem LinearIndependent.repr_eq_single {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (i : ι) (x : (Submodule.span R (Set.range v))) (hx : x = v i) :
            hv.repr x = Finsupp.single i 1
            theorem LinearIndependent.span_repr_eq {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) [Nontrivial R] (x : (Submodule.span R (Set.range v))) :
            theorem LinearIndependent.not_smul_mem_span {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (i : ι) (a : R) (ha : a v i Submodule.span R (v '' (Set.univ \ {i}))) :
            a = 0
            theorem LinearIndependent.iSupIndep_span_singleton {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) :
            iSupIndep fun (i : ι) => Submodule.span R {v i}

            See also iSupIndep_iff_linearIndependent_of_ne_zero.

            @[deprecated LinearIndependent.iSupIndep_span_singleton (since := "2024-11-24")]
            theorem LinearIndependent.independent_span_singleton {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) :
            iSupIndep fun (i : ι) => Submodule.span R {v i}

            Alias of LinearIndependent.iSupIndep_span_singleton.


            See also iSupIndep_iff_linearIndependent_of_ne_zero.

            theorem LinearIndependent.image_subtypeₛ {R : Type u_2} {M : Type u_4} {M' : Type u_5} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] {s : Set M} {f : M →ₗ[R] M'} (hs : LinearIndependent R fun (x : s) => x) (hf_inj : Set.InjOn f (Submodule.span R s)) :
            LinearIndependent R fun (x : (f '' s)) => x
            theorem linearIndependent_inl_union_inr' {ι : Type u'} {ι' : Type u_1} {R : Type u_2} {M : Type u_4} {M' : Type u_5} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] {v : ιM} {v' : ι'M'} (hv : LinearIndependent R v) (hv' : LinearIndependent R v') :
            LinearIndependent R (Sum.elim ((LinearMap.inl R M M') v) ((LinearMap.inr R M M') v'))
            theorem LinearIndependent.inl_union_inr {R : Type u_2} {M : Type u_4} {M' : Type u_5} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] {s : Set M} {t : Set M'} (hs : LinearIndependent R fun (x : s) => x) (ht : LinearIndependent R fun (x : t) => x) :
            LinearIndependent R fun (x : ((LinearMap.inl R M M') '' s (LinearMap.inr R M M') '' t)) => x
            def LinearIndependent.Maximal {ι : Type w} {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {v : ιM} (_i : LinearIndependent R v) :

            A linearly independent family is maximal if there is no strictly larger linearly independent family.

            Equations
            Instances For
              theorem LinearIndependent.maximal_iff {ι : Type w} {R : Type u} [Semiring R] [Nontrivial R] {M : Type v} [AddCommMonoid M] [Module R M] {v : ιM} (i : LinearIndependent R v) :
              i.Maximal ∀ (κ : Type v) (w : κM), LinearIndependent R w∀ (j : ικ), w j = vFunction.Surjective j

              An alternative characterization of a maximal linearly independent family, quantifying over types (in the same universe as M) into which the indexing family injects.

              theorem exists_maximal_independent' {ι : Type u'} (R : Type u_2) {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (s : ιM) :
              ∃ (I : Set ι), (LinearIndependent R fun (x : I) => s x) ∀ (J : Set ι), I J(LinearIndependent R fun (x : J) => s x)I = J
              theorem surjective_of_linearIndependent_of_span {ι : Type u'} {ι' : Type u_1} {R : Type u_2} {M : Type u_4} {v : ιM} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] (hv : LinearIndependent R v) (f : ι' ι) (hss : Set.range v (Submodule.span R (Set.range (v f)))) :
              theorem eq_of_linearIndependent_of_span_subtype {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] {s t : Set M} (hs : LinearIndependent R fun (x : s) => x) (h : t s) (hst : s (Submodule.span R t)) :
              s = t
              theorem le_of_span_le_span {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] {s t u : Set M} (hl : LinearIndependent R Subtype.val) (hsu : s u) (htu : t u) (hst : Submodule.span R s Submodule.span R t) :
              s t
              theorem span_le_span_iff {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] {s t u : Set M} (hl : LinearIndependent R Subtype.val) (hsu : s u) (htu : t u) :
              theorem linearIndependent_iff_ker {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] :
              theorem linearIndependent_iff {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] :
              LinearIndependent R v ∀ (l : ι →₀ R), (Finsupp.linearCombination R v) l = 0l = 0
              theorem linearIndependent_iff' {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] :
              LinearIndependent R v ∀ (s : Finset ι) (g : ιR), is, g i v i = 0is, g i = 0
              theorem linearIndependent_iff'' {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] :
              LinearIndependent R v ∀ (s : Finset ι) (g : ιR), (∀ is, g i = 0)is, g i v i = 0∀ (i : ι), g i = 0
              theorem not_linearIndependent_iff {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] :
              ¬LinearIndependent R v ∃ (s : Finset ι) (g : ιR), is, g i v i = 0 is, g i 0
              theorem Fintype.linearIndependent_iff {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] [Fintype ι] :
              LinearIndependent R v ∀ (g : ιR), i : ι, g i v i = 0∀ (i : ι), g i = 0
              theorem Fintype.linearIndependent_iff' {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] [Fintype ι] [DecidableEq ι] :
              LinearIndependent R v LinearMap.ker ((LinearMap.lsum R (fun (x : ι) => R) ) fun (i : ι) => LinearMap.id.smulRight (v i)) =

              A finite family of vectors v i is linear independent iff the linear map that sends c : ι → R to ∑ i, c i • v i has the trivial kernel.

              theorem Fintype.not_linearIndependent_iff {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] [Fintype ι] :
              ¬LinearIndependent R v ∃ (g : ιR), i : ι, g i v i = 0 ∃ (i : ι), g i 0
              theorem LinearIndependent.pair_iff {R : Type u_2} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] {x y : M} :
              LinearIndependent R ![x, y] ∀ (s t : R), s x + t y = 0s = 0 t = 0

              Also see LinearIndependent.pair_iff' for a simpler version over fields.

              theorem LinearMap.linearIndependent_iff_of_disjoint {ι : Type u'} {R : Type u_2} {M : Type u_4} {M' : Type u_5} {v : ιM} [Ring R] [AddCommGroup M] [AddCommGroup M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') (hf_inj : Disjoint (Submodule.span R (Set.range v)) (LinearMap.ker f)) :

              If the kernel of a linear map is disjoint from the span of a family of vectors, then the family is linearly independent iff it is linearly independent after composing with the linear map.

              theorem LinearIndependent.map {ι : Type u'} {R : Type u_2} {M : Type u_4} {M' : Type u_5} {v : ιM} [Ring R] [AddCommGroup M] [AddCommGroup M'] [Module R M] [Module R M'] (hv : LinearIndependent R v) {f : M →ₗ[R] M'} (hf_inj : Disjoint (Submodule.span R (Set.range v)) (LinearMap.ker f)) :

              If v is a linearly independent family of vectors and the kernel of a linear map f is disjoint with the submodule spanned by the vectors of v, then f ∘ v is a linearly independent family of vectors. See also LinearIndependent.map' for a special case assuming ker f = ⊥.

              theorem LinearIndependent.map' {ι : Type u'} {R : Type u_2} {M : Type u_4} {M' : Type u_5} {v : ιM} [Ring R] [AddCommGroup M] [AddCommGroup M'] [Module R M] [Module R M'] (hv : LinearIndependent R v) (f : M →ₗ[R] M') (hf_inj : LinearMap.ker f = ) :

              An injective linear map sends linearly independent families of vectors to linearly independent families of vectors. See also LinearIndependent.map for a more general statement.

              theorem LinearIndependent.map_of_injective_injective {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] {R' : Type u_6} {M' : Type u_7} [Ring R'] [AddCommGroup M'] [Module R' M'] (hv : LinearIndependent R v) (i : R'R) (j : M →+ M') (hi : ∀ (r : R'), i r = 0r = 0) (hj : ∀ (m : M), j m = 0m = 0) (hc : ∀ (r : R') (m : M), j (i r m) = r j m) :

              If M / R and M' / R' are modules, i : R' → R is a map, j : M →+ M' is a monoid map, such that they send non-zero elements to non-zero elements, and compatible with the scalar multiplications on M and M', then j sends linearly independent families of vectors to linearly independent families of vectors. As a special case, taking R = R' it is LinearIndependent.map'.

              theorem LinearIndependent.map_of_surjective_injective {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] {R' : Type u_6} {M' : Type u_7} [Ring R'] [AddCommGroup M'] [Module R' M'] (hv : LinearIndependent R v) (i : ZeroHom R R') (j : M →+ M') (hi : Function.Surjective i) (hj : ∀ (m : M), j m = 0m = 0) (hc : ∀ (r : R) (m : M), j (r m) = i r j m) :

              If M / R and M' / R' are modules, i : R → R' is a surjective map which maps zero to zero, j : M →+ M' is a monoid map which sends non-zero elements to non-zero elements, such that the scalar multiplications on M and M' are compatible, then j sends linearly independent families of vectors to linearly independent families of vectors. As a special case, taking R = R' it is LinearIndependent.map'.

              theorem LinearMap.linearIndependent_iff {ι : Type u'} {R : Type u_2} {M : Type u_4} {M' : Type u_5} {v : ιM} [Ring R] [AddCommGroup M] [AddCommGroup M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') (hf_inj : LinearMap.ker f = ) :

              If f is an injective linear map, then the family f ∘ v is linearly independent if and only if the family v is linearly independent.

              theorem LinearIndependent.fin_cons' {R : Type u_2} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] {m : } (x : M) (v : Fin mM) (hli : LinearIndependent R v) (x_ortho : ∀ (c : R) (y : (Submodule.span R (Set.range v))), c x + y = 0c = 0) :

              See LinearIndependent.fin_cons for a family of elements in a vector space.

              The following lemmas use the subtype defined by a set in M as the index set ι.

              theorem linearIndependent_comp_subtype {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] {s : Set ι} :
              LinearIndependent (ι := s) R (v Subtype.val) lFinsupp.supported R R s, (Finsupp.linearCombination R v) l = 0l = 0
              theorem linearDependent_comp_subtype' {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] {s : Set ι} :
              ¬LinearIndependent (ι := s) R (v Subtype.val) fFinsupp.supported R R s, (Finsupp.linearCombination R v) f = 0 f 0
              theorem linearDependent_comp_subtype {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] {s : Set ι} :
              ¬LinearIndependent (ι := s) R (v Subtype.val) fFinsupp.supported R R s, if.support, f i v i = 0 f 0

              A version of linearDependent_comp_subtype' with Finsupp.linearCombination unfolded.

              theorem linearIndependent_subtype {R : Type u_2} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] {s : Set M} :
              (LinearIndependent R fun (x : s) => x) lFinsupp.supported R R s, (Finsupp.linearCombination R id) l = 0l = 0
              theorem linearIndependent_comp_subtype_disjoint {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] {s : Set ι} :
              theorem linearIndependent_iff_linearCombinationOn {R : Type u_2} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] {s : Set M} :
              @[deprecated linearIndependent_iff_linearCombinationOn (since := "2024-08-29")]
              theorem linearIndependent_iff_totalOn {R : Type u_2} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] {s : Set M} :

              Alias of linearIndependent_iff_linearCombinationOn.

              Properties which require Ring R #

              theorem LinearIndependent.linear_combination_pair_of_det_ne_zero {R : Type u_6} {M : Type u_7} [CommRing R] [NoZeroDivisors R] [AddCommGroup M] [Module R M] {x y : M} (h : LinearIndependent R ![x, y]) {a b c d : R} (h' : a * d - b * c 0) :
              LinearIndependent R ![a x + b y, c x + d y]

              If two vectors x and y are linearly independent, so are their linear combinations a x + b y and c x + d y provided the determinant a * d - b * c is nonzero.

              theorem LinearIndependent.sum_type {ι : Type u'} {ι' : Type u_1} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] {v' : ι'M} (hv : LinearIndependent R v) (hv' : LinearIndependent R v') (h : Disjoint (Submodule.span R (Set.range v)) (Submodule.span R (Set.range v'))) :
              theorem LinearIndependent.union {R : Type u_2} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] {s t : Set M} (hs : LinearIndependent R fun (x : s) => x) (ht : LinearIndependent R fun (x : t) => x) (hst : Disjoint (Submodule.span R s) (Submodule.span R t)) :
              LinearIndependent R fun (x : (s t)) => x
              theorem linearIndependent_iUnion_finite_subtype {R : Type u_2} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] {ι : Type u_6} {f : ιSet M} (hl : ∀ (i : ι), LinearIndependent R fun (x : (f i)) => x) (hd : ∀ (i : ι) (t : Set ι), t.FiniteitDisjoint (Submodule.span R (f i)) (⨆ it, Submodule.span R (f i))) :
              LinearIndependent R fun (x : (⋃ (i : ι), f i)) => x
              theorem linearIndependent_iUnion_finite {R : Type u_2} {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] {η : Type u_6} {ιs : ηType u_7} {f : (j : η) → ιs jM} (hindep : ∀ (j : η), LinearIndependent R (f j)) (hd : ∀ (i : η) (t : Set η), t.FiniteitDisjoint (Submodule.span R (Set.range (f i))) (⨆ it, Submodule.span R (Set.range (f i)))) :
              LinearIndependent R fun (ji : (j : η) × ιs j) => f ji.fst ji.snd
              theorem linearIndependent_iff_not_smul_mem_span {ι : Type u'} {R : Type u_2} {M : Type u_4} {v : ιM} [Ring R] [AddCommGroup M] [Module R M] :
              LinearIndependent R v ∀ (i : ι) (a : R), a v i Submodule.span R (v '' (Set.univ \ {i}))a = 0
              theorem exists_maximal_independent {ι : Type u'} (R : Type u_2) {M : Type u_4} [Ring R] [AddCommGroup M] [Module R M] (s : ιM) :
              ∃ (I : Set ι), (LinearIndependent R fun (x : I) => s x) iI, ∃ (a : R), a 0 a s i Submodule.span R (s '' I)
              theorem LinearIndependent.image_subtype {R : Type u_2} {M : Type u_4} {M' : Type u_5} [Ring R] [AddCommGroup M] [AddCommGroup M'] [Module R M] [Module R M'] {s : Set M} {f : M →ₗ[R] M'} (hs : LinearIndependent R fun (x : s) => x) (hf_inj : Disjoint (Submodule.span R s) (LinearMap.ker f)) :
              LinearIndependent R fun (x : (f '' s)) => x
              theorem linearIndependent_monoidHom (G : Type u_6) [Monoid G] (L : Type u_7) [CommRing L] [NoZeroDivisors L] :
              LinearIndependent L fun (f : G →* L) => f

              Dedekind's linear independence of characters

              Stacks Tag 0CKL

              theorem linearIndependent_unique_iff {ι : Type u'} {R : Type u_2} {M : Type u_4} [Ring R] [Nontrivial R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] (v : ιM) [Unique ι] :
              theorem linearIndependent_unique {ι : Type u'} {R : Type u_2} {M : Type u_4} [Ring R] [Nontrivial R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] (v : ιM) [Unique ι] :

              Alias of the reverse direction of linearIndependent_unique_iff.

              theorem linearIndependent_singleton {R : Type u_2} {M : Type u_4} [Ring R] [Nontrivial R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {x : M} (hx : x 0) :
              LinearIndependent R fun (x_1 : {x}) => x_1

              Properties which require DivisionRing K #

              These can be considered generalizations of properties of linear independence in vector spaces.

              theorem mem_span_insert_exchange {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Set V} {x y : V} :
              x Submodule.span K (insert y s)xSubmodule.span K sy Submodule.span K (insert x s)
              theorem linearIndependent_iff_not_mem_span {ι : Type u'} {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {v : ιV} :
              LinearIndependent K v ∀ (i : ι), v iSubmodule.span K (v '' (Set.univ \ {i}))
              theorem LinearIndependent.insert {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Set V} {x : V} (hs : LinearIndependent K fun (b : s) => b) (hx : xSubmodule.span K s) :
              LinearIndependent K fun (b : (insert x s)) => b
              theorem linearIndependent_option' {ι : Type u'} {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {v : ιV} {x : V} :
              (LinearIndependent K fun (o : Option ι) => o.casesOn' x v) LinearIndependent K v xSubmodule.span K (Set.range v)
              theorem LinearIndependent.option {ι : Type u'} {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {v : ιV} {x : V} (hv : LinearIndependent K v) (hx : xSubmodule.span K (Set.range v)) :
              LinearIndependent K fun (o : Option ι) => o.casesOn' x v
              theorem linearIndependent_option {ι : Type u'} {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {v : Option ιV} :
              theorem linearIndependent_insert' {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {ι : Type u_6} {s : Set ι} {a : ι} {f : ιV} (has : as) :
              (LinearIndependent K fun (x : (insert a s)) => f x) (LinearIndependent K fun (x : s) => f x) f aSubmodule.span K (f '' s)
              theorem linearIndependent_insert {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Set V} {x : V} (hxs : xs) :
              (LinearIndependent K fun (b : (insert x s)) => b) (LinearIndependent K fun (b : s) => b) xSubmodule.span K s
              theorem linearIndependent_pair {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {x y : V} (hx : x 0) (hy : ∀ (a : K), a x y) :
              theorem LinearIndependent.pair_iff' {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {x y : V} (hx : x 0) :
              LinearIndependent K ![x, y] ∀ (a : K), a x y

              Also see LinearIndependent.pair_iff for the version over arbitrary rings.

              theorem linearIndependent_fin_cons {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {x : V} {n : } {v : Fin nV} :
              theorem linearIndependent_fin_snoc {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {x : V} {n : } {v : Fin nV} :
              theorem LinearIndependent.fin_cons {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {x : V} {n : } {v : Fin nV} (hv : LinearIndependent K v) (hx : xSubmodule.span K (Set.range v)) :

              See LinearIndependent.fin_cons' for an uglier version that works if you only have a module over a semiring.

              theorem linearIndependent_fin_succ {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {n : } {v : Fin (n + 1)V} :
              theorem linearIndependent_fin_succ' {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {n : } {v : Fin (n + 1)V} :
              def equiv_linearIndependent {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] (n : ) :
              { s : Fin (n + 1)V // LinearIndependent K s } (s : { s : Fin nV // LinearIndependent K s }) × (↑(Submodule.span K (Set.range s)))

              Equivalence between k + 1 vectors of length n and k vectors of length n along with a vector in the complement of their span.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem linearIndependent_fin2 {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {f : Fin 2V} :
                LinearIndependent K f f 1 0 ∀ (a : K), a f 1 f 0
                theorem exists_linearIndependent_extension {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Set V} (hs : LinearIndependent K Subtype.val) (hst : s t) :
                bt, s b t (Submodule.span K b) LinearIndependent K Subtype.val
                theorem exists_linearIndependent' {ι : Type u'} (K : Type u_3) {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] (v : ιV) :
                ∃ (κ : Type u') (a : κι), Function.Injective a Submodule.span K (Set.range (v a)) = Submodule.span K (Set.range v) LinearIndependent K (v a)

                Indexed version of exists_linearIndependent.

                noncomputable def LinearIndependent.extend {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Set V} (hs : LinearIndependent K fun (x : s) => x) (hst : s t) :
                Set V

                LinearIndependent.extend adds vectors to a linear independent set s ⊆ t until it spans all elements of t.

                Equations
                Instances For
                  theorem LinearIndependent.extend_subset {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Set V} (hs : LinearIndependent K fun (x : s) => x) (hst : s t) :
                  hs.extend hst t
                  theorem LinearIndependent.subset_extend {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Set V} (hs : LinearIndependent K fun (x : s) => x) (hst : s t) :
                  s hs.extend hst
                  theorem LinearIndependent.subset_span_extend {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Set V} (hs : LinearIndependent K fun (x : s) => x) (hst : s t) :
                  t (Submodule.span K (hs.extend hst))
                  theorem LinearIndependent.span_extend_eq_span {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Set V} (hs : LinearIndependent K fun (x : s) => x) (hst : s t) :
                  Submodule.span K (hs.extend hst) = Submodule.span K t
                  theorem LinearIndependent.linearIndependent_extend {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Set V} (hs : LinearIndependent K fun (x : s) => x) (hst : s t) :
                  theorem exists_of_linearIndependent_of_finite_span {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Set V} {t : Finset V} (hs : LinearIndependent K fun (x : s) => x) (hst : s (Submodule.span K t)) :
                  ∃ (t' : Finset V), t' s t s t' t'.card = t.card
                  theorem exists_finite_card_le_of_finite_of_linearIndependent_of_span {K : Type u_3} {V : Type u} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Set V} (ht : t.Finite) (hs : LinearIndependent K fun (x : s) => x) (hst : s (Submodule.span K t)) :
                  ∃ (h : s.Finite), h.toFinset.card ht.toFinset.card