Long exact sequences of Ext
-groups #
In this file, we obtain the covariant long exact sequence of Ext
when n₀ + 1 = n₁
:
Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁
when S
is a short exact short complex in an abelian category C
, n₀ + 1 = n₁
and X : C
.
Similarly, if Y : C
, there is a contravariant long exact sequence :
Ext S.X₃ Y n₀ → Ext S.X₂ Y n₀ → Ext S.X₁ Y n₀ → Ext S.X₃ Y n₁ → Ext S.X₂ Y n₁ → Ext S.X₁ Y n₁
.
Alternative formulation of covariant_sequence_exact₂
Alternative formulation of covariant_sequence_exact₃
Alternative formulation of covariant_sequence_exact₁
Given a short exact short complex S
in an abelian category C
and an object X : C
,
this is the long exact sequence
Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁
when n₀ + 1 = n₁
Equations
- One or more equations did not get rendered due to their size.
Instances For
Alternative formulation of contravariant_sequence_exact₂
Alternative formulation of contravariant_sequence_exact₁
Alternative formulation of contravariant_sequence_exact₃
Given a short exact short complex S
in an abelian category C
and an object Y : C
,
this is the long exact sequence
Ext S.X₃ Y n₀ → Ext S.X₂ Y n₀ → Ext S.X₁ Y n₀ → Ext S.X₃ Y n₁ → Ext S.X₂ Y n₁ → Ext S.X₁ Y n₁
when 1 + n₀ = n₁
.
Equations
- One or more equations did not get rendered due to their size.