Documentation

Mathlib.Algebra.Homology.DerivedCategory.Ext.ExactSequences

Long exact sequences of Ext-groups #

In this file, we obtain the covariant long exact sequence of Ext when n₀ + 1 = n₁: Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁ when S is a short exact short complex in an abelian category C, n₀ + 1 = n₁ and X : C. Similarly, if Y : C, there is a contravariant long exact sequence : Ext S.X₃ Y n₀ → Ext S.X₂ Y n₀ → Ext S.X₁ Y n₀ → Ext S.X₃ Y n₁ → Ext S.X₂ Y n₁ → Ext S.X₁ Y n₁.

theorem CategoryTheory.Abelian.Ext.covariant_sequence_exact₃' {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (X : C) {S : ShortComplex C} (hS : S.ShortExact) (n₀ n₁ : ) (h : n₀ + 1 = n₁) :

Alternative formulation of covariant_sequence_exact₃

theorem CategoryTheory.Abelian.Ext.covariant_sequence_exact₁' {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (X : C) {S : ShortComplex C} (hS : S.ShortExact) (n₀ n₁ : ) (h : n₀ + 1 = n₁) :

Alternative formulation of covariant_sequence_exact₁

noncomputable def CategoryTheory.Abelian.Ext.covariantSequence {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (X : C) {S : ShortComplex C} (hS : S.ShortExact) (n₀ n₁ : ) (h : n₀ + 1 = n₁) :

Given a short exact short complex S in an abelian category C and an object X : C, this is the long exact sequence Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁ when n₀ + 1 = n₁

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.Abelian.Ext.covariantSequence_exact {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (X : C) {S : ShortComplex C} (hS : S.ShortExact) (n₀ n₁ : ) (h : n₀ + 1 = n₁) :
    (covariantSequence X hS n₀ n₁ h).Exact
    theorem CategoryTheory.Abelian.Ext.covariant_sequence_exact₁ {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (X : C) {S : ShortComplex C} (hS : S.ShortExact) {n₁ : } (x₁ : Ext X S.X₁ n₁) (hx₁ : x₁.comp (mk₀ S.f) = 0) {n₀ : } (hn₀ : n₀ + 1 = n₁) :
    ∃ (x₃ : Ext X S.X₃ n₀), x₃.comp hS.extClass hn₀ = x₁
    theorem CategoryTheory.Abelian.Ext.covariant_sequence_exact₂ {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (X : C) {S : ShortComplex C} (hS : S.ShortExact) {n : } (x₂ : Ext X S.X₂ n) (hx₂ : x₂.comp (mk₀ S.g) = 0) :
    ∃ (x₁ : Ext X S.X₁ n), x₁.comp (mk₀ S.f) = x₂
    theorem CategoryTheory.Abelian.Ext.covariant_sequence_exact₃ {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (X : C) {S : ShortComplex C} (hS : S.ShortExact) {n₀ : } (x₃ : Ext X S.X₃ n₀) {n₁ : } (hn₁ : n₀ + 1 = n₁) (hx₃ : x₃.comp hS.extClass hn₁ = 0) :
    ∃ (x₂ : Ext X S.X₂ n₀), x₂.comp (mk₀ S.g) = x₃
    theorem CategoryTheory.Abelian.Ext.contravariant_sequence_exact₁' {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) (Y : C) (n₀ n₁ : ) (h : 1 + n₀ = n₁) :

    Alternative formulation of contravariant_sequence_exact₁

    theorem CategoryTheory.Abelian.Ext.contravariant_sequence_exact₃' {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) (Y : C) (n₀ n₁ : ) (h : 1 + n₀ = n₁) :

    Alternative formulation of contravariant_sequence_exact₃

    noncomputable def CategoryTheory.Abelian.Ext.contravariantSequence {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) (Y : C) (n₀ n₁ : ) (h : 1 + n₀ = n₁) :

    Given a short exact short complex S in an abelian category C and an object Y : C, this is the long exact sequence Ext S.X₃ Y n₀ → Ext S.X₂ Y n₀ → Ext S.X₁ Y n₀ → Ext S.X₃ Y n₁ → Ext S.X₂ Y n₁ → Ext S.X₁ Y n₁ when 1 + n₀ = n₁.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.Abelian.Ext.contravariantSequence_exact {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) (Y : C) (n₀ n₁ : ) (h : 1 + n₀ = n₁) :
      (contravariantSequence hS Y n₀ n₁ h).Exact
      theorem CategoryTheory.Abelian.Ext.contravariant_sequence_exact₁ {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) (Y : C) {n₀ : } (x₁ : Ext S.X₁ Y n₀) {n₁ : } (hn₁ : 1 + n₀ = n₁) (hx₁ : hS.extClass.comp x₁ hn₁ = 0) :
      ∃ (x₂ : Ext S.X₂ Y n₀), (mk₀ S.f).comp x₂ = x₁
      theorem CategoryTheory.Abelian.Ext.contravariant_sequence_exact₂ {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) (Y : C) {n : } (x₂ : Ext S.X₂ Y n) (hx₂ : (mk₀ S.f).comp x₂ = 0) :
      ∃ (x₁ : Ext S.X₃ Y n), (mk₀ S.g).comp x₁ = x₂
      theorem CategoryTheory.Abelian.Ext.contravariant_sequence_exact₃ {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {S : ShortComplex C} (hS : S.ShortExact) (Y : C) {n₁ : } (x₃ : Ext S.X₃ Y n₁) (hx₃ : (mk₀ S.g).comp x₃ = 0) {n₀ : } (hn₀ : 1 + n₀ = n₁) :
      ∃ (x₁ : Ext S.X₁ Y n₀), hS.extClass.comp x₁ hn₀ = x₃