Documentation

Mathlib.Algebra.Homology.DerivedCategory.Ext.ExactSequences

Long exact sequences of Ext-groups #

In this file, we obtain the covariant long exact sequence of Ext when n₀ + 1 = n₁: Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁ when S is a short exact short complex in an abelian category C, n₀ + 1 = n₁ and X : C. Similarly, if Y : C, there is a contravariant long exact sequence : Ext S.X₃ Y n₀ → Ext S.X₂ Y n₀ → Ext S.X₁ Y n₀ → Ext S.X₃ Y n₁ → Ext S.X₂ Y n₁ → Ext S.X₁ Y n₁.

theorem CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) [HasDerivedCategory C] {X : C} {n₀ : } (x : CategoryTheory.Abelian.Ext X S.X₃ n₀) {n₁ : } (h : n₀ + 1 = n₁) :
((CategoryTheory.preadditiveCoyoneda.obj (Opposite.op ((DerivedCategory.singleFunctor C 0).obj X))).homologySequenceδ hS.singleTriangle n₀ n₁ ) x.hom = (x.comp hS.extClass h).hom
theorem CategoryTheory.Abelian.Ext.covariant_sequence_exact₃' {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] (X : C) {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) (n₀ n₁ : ) (h : n₀ + 1 = n₁) :
(CategoryTheory.ShortComplex.mk (AddCommGrp.ofHom ((CategoryTheory.Abelian.Ext.mk₀ S.g).postcomp X )) (AddCommGrp.ofHom (hS.extClass.postcomp X h)) ).Exact

Alternative formulation of covariant_sequence_exact₃

theorem CategoryTheory.Abelian.Ext.covariant_sequence_exact₁' {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] (X : C) {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) (n₀ n₁ : ) (h : n₀ + 1 = n₁) :
(CategoryTheory.ShortComplex.mk (AddCommGrp.ofHom (hS.extClass.postcomp X h)) (AddCommGrp.ofHom ((CategoryTheory.Abelian.Ext.mk₀ S.f).postcomp X )) ).Exact

Alternative formulation of covariant_sequence_exact₁

Given a short exact short complex S in an abelian category C and an object X : C, this is the long exact sequence Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁ when n₀ + 1 = n₁

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.Abelian.Ext.covariant_sequence_exact₁ {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] (X : C) {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) {n₁ : } (x₁ : CategoryTheory.Abelian.Ext X S.X₁ n₁) (hx₁ : x₁.comp (CategoryTheory.Abelian.Ext.mk₀ S.f) = 0) {n₀ : } (hn₀ : n₀ + 1 = n₁) :
    ∃ (x₃ : CategoryTheory.Abelian.Ext X S.X₃ n₀), x₃.comp hS.extClass hn₀ = x₁
    theorem CategoryTheory.Abelian.Ext.covariant_sequence_exact₃ {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] (X : C) {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) {n₀ : } (x₃ : CategoryTheory.Abelian.Ext X S.X₃ n₀) {n₁ : } (hn₁ : n₀ + 1 = n₁) (hx₃ : x₃.comp hS.extClass hn₁ = 0) :
    ∃ (x₂ : CategoryTheory.Abelian.Ext X S.X₂ n₀), x₂.comp (CategoryTheory.Abelian.Ext.mk₀ S.g) = x₃
    theorem CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) [HasDerivedCategory C] {Y : C} {n₀ : } (x : CategoryTheory.Abelian.Ext S.X₁ Y n₀) {n₁ : } (h : 1 + n₀ = n₁) :
    ((CategoryTheory.preadditiveYoneda.obj ((DerivedCategory.singleFunctor C 0).obj Y)).homologySequenceδ ((CategoryTheory.Pretriangulated.triangleOpEquivalence (DerivedCategory C)).functor.obj (Opposite.op hS.singleTriangle)) n₀ n₁ ) x.hom = (hS.extClass.comp x h).hom

    Alternative formulation of contravariant_sequence_exact₁

    Alternative formulation of contravariant_sequence_exact₃

    Given a short exact short complex S in an abelian category C and an object Y : C, this is the long exact sequence Ext S.X₃ Y n₀ → Ext S.X₂ Y n₀ → Ext S.X₁ Y n₀ → Ext S.X₃ Y n₁ → Ext S.X₂ Y n₁ → Ext S.X₁ Y n₁ when 1 + n₀ = n₁.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.Abelian.Ext.contravariant_sequence_exact₁ {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) (Y : C) {n₀ : } (x₁ : CategoryTheory.Abelian.Ext S.X₁ Y n₀) {n₁ : } (hn₁ : 1 + n₀ = n₁) (hx₁ : hS.extClass.comp x₁ hn₁ = 0) :
      ∃ (x₂ : CategoryTheory.Abelian.Ext S.X₂ Y n₀), (CategoryTheory.Abelian.Ext.mk₀ S.f).comp x₂ = x₁
      theorem CategoryTheory.Abelian.Ext.contravariant_sequence_exact₃ {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) (Y : C) {n₁ : } (x₃ : CategoryTheory.Abelian.Ext S.X₃ Y n₁) (hx₃ : (CategoryTheory.Abelian.Ext.mk₀ S.g).comp x₃ = 0) {n₀ : } (hn₀ : 1 + n₀ = n₁) :
      ∃ (x₁ : CategoryTheory.Abelian.Ext S.X₁ Y n₀), hS.extClass.comp x₁ hn₀ = x₃