Documentation

Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian

Jacobian coordinates for Weierstrass curves #

This file defines the type of points on a Weierstrass curve as a tuple, consisting of an equivalence class of triples up to scaling by weights, satisfying a Weierstrass equation with a nonsingular condition. This file also defines the negation and addition operations of the group law for this type, and proves that they respect the Weierstrass equation and the nonsingular condition. The fact that they form an abelian group is proven in Mathlib.AlgebraicGeometry.EllipticCurve.Group.

Mathematical background #

Let W be a Weierstrass curve over a field F. A point on the weighted projective plane with weights $(2, 3, 1)$ is an equivalence class of triples $[x:y:z]$ with coordinates in F such that $(x, y, z) \sim (x', y', z')$ precisely if there is some unit u of F such that $(x, y, z) = (u^2x', u^3y', uz')$, with an extra condition that $(x, y, z) \ne (0, 0, 0)$. A rational point is a point on the $(2, 3, 1)$-projective plane satisfying a $(2, 3, 1)$-homogeneous Weierstrass equation $Y^2 + a_1XYZ + a_3YZ^3 = X^3 + a_2X^2Z^2 + a_4XZ^4 + a_6Z^6$, and being nonsingular means the partial derivatives $W_X(X, Y, Z)$, $W_Y(X, Y, Z)$, and $W_Z(X, Y, Z)$ do not vanish simultaneously. Note that the vanishing of the Weierstrass equation and its partial derivatives are independent of the representative for $[x:y:z]$, and the nonsingularity condition already implies that $(x, y, z) \ne (0, 0, 0)$, so a nonsingular rational point on W can simply be given by a tuple consisting of $[x:y:z]$ and the nonsingular condition on any representative. In cryptography, as well as in this file, this is often called the Jacobian coordinates of W.

As in Mathlib.AlgebraicGeometry.EllipticCurve.Affine, the set of nonsingular rational points forms an abelian group under the same secant-and-tangent process, but the polynomials involved are $(2, 3, 1)$-homogeneous, and any instances of division become multiplication in the $Z$-coordinate. Note that most computational proofs follow from their analogous proofs for affine coordinates.

Main definitions #

Main statements #

Implementation notes #

A point representative is implemented as a term P of type Fin 3 β†’ R, which allows for the vector notation ![x, y, z]. However, P is not syntactically equivalent to the expanded vector ![P x, P y, P z], so the lemmas fin3_def and fin3_def_ext can be used to convert between the two forms. The equivalence of two point representatives P and Q is implemented as an equivalence of orbits of the action of RΛ£, or equivalently that there is some unit u of R such that P = u β€’ Q. However, u β€’ Q is not syntactically equal to ![uΒ² * Q x, uΒ³ * Q y, u * Q z], so the lemmas smul_fin3 and smul_fin3_ext can be used to convert between the two forms.

References #

J Silverman, The Arithmetic of Elliptic Curves

Tags #

elliptic curve, rational point, Jacobian coordinates

Weierstrass curves #

@[reducible, inline]

An abbreviation for a Weierstrass curve in Jacobian coordinates.

Equations
Instances For
    @[reducible, inline]

    The coercion to a Weierstrass curve in Jacobian coordinates.

    Equations
    • W.toJacobian = W
    Instances For

      Jacobian coordinates #

      theorem WeierstrassCurve.Jacobian.fin3_def {R : Type u} (P : Fin 3 β†’ R) :
      ![P 0, P 1, P 2] = P
      theorem WeierstrassCurve.Jacobian.fin3_def_ext {R : Type u} (X Y Z : R) :
      ![X, Y, Z] 0 = X ∧ ![X, Y, Z] 1 = Y ∧ ![X, Y, Z] 2 = Z
      theorem WeierstrassCurve.Jacobian.comp_fin3 {R : Type u} {S : Type u_1} (f : R β†’ S) (X Y Z : R) :
      f ∘ ![X, Y, Z] = ![f X, f Y, f Z]

      The scalar multiplication on a point representative.

      Equations
      • WeierstrassCurve.Jacobian.instSMulPoint = { smul := fun (u : R) (P : Fin 3 β†’ R) => ![u ^ 2 * P 0, u ^ 3 * P 1, u * P 2] }
      Instances For
        theorem WeierstrassCurve.Jacobian.smul_fin3 {R : Type u} [CommRing R] (P : Fin 3 β†’ R) (u : R) :
        u β€’ P = ![u ^ 2 * P 0, u ^ 3 * P 1, u * P 2]
        theorem WeierstrassCurve.Jacobian.smul_fin3_ext {R : Type u} [CommRing R] (P : Fin 3 β†’ R) (u : R) :
        (u β€’ P) 0 = u ^ 2 * P 0 ∧ (u β€’ P) 1 = u ^ 3 * P 1 ∧ (u β€’ P) 2 = u * P 2

        The multiplicative action on a point representative.

        Equations
        • WeierstrassCurve.Jacobian.instMulActionPoint = MulAction.mk β‹― β‹―
        Instances For

          The equivalence setoid for a point representative.

          Equations
          Instances For
            @[reducible, inline]

            The equivalence class of a point representative.

            Equations
            Instances For
              theorem WeierstrassCurve.Jacobian.smul_equiv {R : Type u} [CommRing R] (P : Fin 3 β†’ R) {u : R} (hu : IsUnit u) :
              @[simp]
              theorem WeierstrassCurve.Jacobian.smul_eq {R : Type u} [CommRing R] (P : Fin 3 β†’ R) {u : R} (hu : IsUnit u) :
              ⟦u β€’ P⟧ = ⟦P⟧
              @[reducible, inline]

              The coercion to a Weierstrass curve in affine coordinates.

              Equations
              • W'.toAffine = W'
              Instances For
                theorem WeierstrassCurve.Jacobian.equiv_iff_eq_of_Z_eq' {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (hz : P 2 = Q 2) (mem : Q 2 ∈ nonZeroDivisors R) :
                P β‰ˆ Q ↔ P = Q
                theorem WeierstrassCurve.Jacobian.equiv_iff_eq_of_Z_eq {R : Type u} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hz : P 2 = Q 2) (hQz : Q 2 β‰  0) :
                P β‰ˆ Q ↔ P = Q
                theorem WeierstrassCurve.Jacobian.Z_eq_zero_of_equiv {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (h : P β‰ˆ Q) :
                P 2 = 0 ↔ Q 2 = 0
                theorem WeierstrassCurve.Jacobian.X_eq_of_equiv {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (h : P β‰ˆ Q) :
                P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2
                theorem WeierstrassCurve.Jacobian.Y_eq_of_equiv {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (h : P β‰ˆ Q) :
                P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3
                theorem WeierstrassCurve.Jacobian.not_equiv_of_Z_eq_zero_left {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (hPz : P 2 = 0) (hQz : Q 2 β‰  0) :
                theorem WeierstrassCurve.Jacobian.not_equiv_of_Z_eq_zero_right {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (hPz : P 2 β‰  0) (hQz : Q 2 = 0) :
                theorem WeierstrassCurve.Jacobian.not_equiv_of_X_ne {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (hx : P 0 * Q 2 ^ 2 β‰  Q 0 * P 2 ^ 2) :
                theorem WeierstrassCurve.Jacobian.not_equiv_of_Y_ne {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (hy : P 1 * Q 2 ^ 3 β‰  Q 1 * P 2 ^ 3) :
                theorem WeierstrassCurve.Jacobian.equiv_of_X_eq_of_Y_eq {F : Type v} [Field F] {P Q : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) :
                P β‰ˆ Q
                theorem WeierstrassCurve.Jacobian.equiv_some_of_Z_ne_zero {F : Type v} [Field F] {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                P β‰ˆ ![P 0 / P 2 ^ 2, P 1 / P 2 ^ 3, 1]
                theorem WeierstrassCurve.Jacobian.X_eq_iff {F : Type v} [Field F] {P Q : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) :
                P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2 ↔ P 0 / P 2 ^ 2 = Q 0 / Q 2 ^ 2
                theorem WeierstrassCurve.Jacobian.Y_eq_iff {F : Type v} [Field F] {P Q : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) :
                P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3 ↔ P 1 / P 2 ^ 3 = Q 1 / Q 2 ^ 3

                Weierstrass equations #

                The polynomial $W(X, Y, Z) := Y^2 + a_1XYZ + a_3YZ^3 - (X^3 + a_2X^2Z^2 + a_4XZ^4 + a_6Z^6)$ associated to a Weierstrass curve W' over R. This is represented as a term of type MvPolynomial (Fin 3) R, where X 0, X 1, and X 2 represent $X$, $Y$, and $Z$ respectively.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem WeierstrassCurve.Jacobian.eval_polynomial {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) :
                  (MvPolynomial.eval P) W'.polynomial = P 1 ^ 2 + W'.a₁ * P 0 * P 1 * P 2 + W'.a₃ * P 1 * P 2 ^ 3 - (P 0 ^ 3 + W'.aβ‚‚ * P 0 ^ 2 * P 2 ^ 2 + W'.aβ‚„ * P 0 * P 2 ^ 4 + W'.a₆ * P 2 ^ 6)
                  theorem WeierstrassCurve.Jacobian.eval_polynomial_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                  (MvPolynomial.eval P) W.polynomial / P 2 ^ 6 = Polynomial.evalEval (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3) W.toAffine.polynomial

                  The proposition that a point representative $(x, y, z)$ lies in W'. In other words, $W(x, y, z) = 0$.

                  Equations
                  Instances For
                    theorem WeierstrassCurve.Jacobian.equation_iff {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) :
                    W'.Equation P ↔ P 1 ^ 2 + W'.a₁ * P 0 * P 1 * P 2 + W'.a₃ * P 1 * P 2 ^ 3 - (P 0 ^ 3 + W'.aβ‚‚ * P 0 ^ 2 * P 2 ^ 2 + W'.aβ‚„ * P 0 * P 2 ^ 4 + W'.a₆ * P 2 ^ 6) = 0
                    theorem WeierstrassCurve.Jacobian.equation_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) {u : R} (hu : IsUnit u) :
                    W'.Equation (u β€’ P) ↔ W'.Equation P
                    theorem WeierstrassCurve.Jacobian.equation_of_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (h : P β‰ˆ Q) :
                    W'.Equation P ↔ W'.Equation Q
                    theorem WeierstrassCurve.Jacobian.equation_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hPz : P 2 = 0) :
                    W'.Equation P ↔ P 1 ^ 2 = P 0 ^ 3
                    theorem WeierstrassCurve.Jacobian.equation_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] :
                    W'.Equation ![1, 1, 0]
                    theorem WeierstrassCurve.Jacobian.equation_some {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (X Y : R) :
                    W'.Equation ![X, Y, 1] ↔ W'.toAffine.Equation X Y
                    theorem WeierstrassCurve.Jacobian.equation_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                    W.Equation P ↔ W.toAffine.Equation (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3)

                    Nonsingular Weierstrass equations #

                    The partial derivative $W_X(X, Y, Z)$ of $W(X, Y, Z)$ with respect to $X$.

                    Equations
                    Instances For
                      theorem WeierstrassCurve.Jacobian.polynomialX_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] :
                      W'.polynomialX = MvPolynomial.C W'.a₁ * MvPolynomial.X 1 * MvPolynomial.X 2 - (MvPolynomial.C 3 * MvPolynomial.X 0 ^ 2 + MvPolynomial.C (2 * W'.aβ‚‚) * MvPolynomial.X 0 * MvPolynomial.X 2 ^ 2 + MvPolynomial.C W'.aβ‚„ * MvPolynomial.X 2 ^ 4)
                      theorem WeierstrassCurve.Jacobian.eval_polynomialX {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) :
                      (MvPolynomial.eval P) W'.polynomialX = W'.a₁ * P 1 * P 2 - (3 * P 0 ^ 2 + 2 * W'.aβ‚‚ * P 0 * P 2 ^ 2 + W'.aβ‚„ * P 2 ^ 4)
                      theorem WeierstrassCurve.Jacobian.eval_polynomialX_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                      (MvPolynomial.eval P) W.polynomialX / P 2 ^ 4 = Polynomial.evalEval (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3) W.toAffine.polynomialX

                      The partial derivative $W_Y(X, Y, Z)$ of $W(X, Y, Z)$ with respect to $Y$.

                      Equations
                      Instances For
                        theorem WeierstrassCurve.Jacobian.polynomialY_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] :
                        W'.polynomialY = MvPolynomial.C 2 * MvPolynomial.X 1 + MvPolynomial.C W'.a₁ * MvPolynomial.X 0 * MvPolynomial.X 2 + MvPolynomial.C W'.a₃ * MvPolynomial.X 2 ^ 3
                        theorem WeierstrassCurve.Jacobian.eval_polynomialY {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) :
                        (MvPolynomial.eval P) W'.polynomialY = 2 * P 1 + W'.a₁ * P 0 * P 2 + W'.a₃ * P 2 ^ 3
                        theorem WeierstrassCurve.Jacobian.eval_polynomialY_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                        (MvPolynomial.eval P) W.polynomialY / P 2 ^ 3 = Polynomial.evalEval (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3) W.toAffine.polynomialY

                        The partial derivative $W_Z(X, Y, Z)$ of $W(X, Y, Z)$ with respect to $Z$.

                        Equations
                        Instances For
                          theorem WeierstrassCurve.Jacobian.polynomialZ_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] :
                          W'.polynomialZ = MvPolynomial.C W'.a₁ * MvPolynomial.X 0 * MvPolynomial.X 1 + MvPolynomial.C (3 * W'.a₃) * MvPolynomial.X 1 * MvPolynomial.X 2 ^ 2 - (MvPolynomial.C (2 * W'.aβ‚‚) * MvPolynomial.X 0 ^ 2 * MvPolynomial.X 2 + MvPolynomial.C (4 * W'.aβ‚„) * MvPolynomial.X 0 * MvPolynomial.X 2 ^ 3 + MvPolynomial.C (6 * W'.a₆) * MvPolynomial.X 2 ^ 5)
                          theorem WeierstrassCurve.Jacobian.eval_polynomialZ {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) :
                          (MvPolynomial.eval P) W'.polynomialZ = W'.a₁ * P 0 * P 1 + 3 * W'.a₃ * P 1 * P 2 ^ 2 - (2 * W'.aβ‚‚ * P 0 ^ 2 * P 2 + 4 * W'.aβ‚„ * P 0 * P 2 ^ 3 + 6 * W'.a₆ * P 2 ^ 5)

                          The proposition that a point representative $(x, y, z)$ in W' is nonsingular. In other words, either $W_X(x, y, z) \ne 0$, $W_Y(x, y, z) \ne 0$, or $W_Z(x, y, z) \ne 0$.

                          Note that this definition is only mathematically accurate for fields.

                          Equations
                          Instances For
                            theorem WeierstrassCurve.Jacobian.nonsingular_iff {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) :
                            W'.Nonsingular P ↔ W'.Equation P ∧ (W'.a₁ * P 1 * P 2 - (3 * P 0 ^ 2 + 2 * W'.aβ‚‚ * P 0 * P 2 ^ 2 + W'.aβ‚„ * P 2 ^ 4) β‰  0 ∨ 2 * P 1 + W'.a₁ * P 0 * P 2 + W'.a₃ * P 2 ^ 3 β‰  0 ∨ W'.a₁ * P 0 * P 1 + 3 * W'.a₃ * P 1 * P 2 ^ 2 - (2 * W'.aβ‚‚ * P 0 ^ 2 * P 2 + 4 * W'.aβ‚„ * P 0 * P 2 ^ 3 + 6 * W'.a₆ * P 2 ^ 5) β‰  0)
                            theorem WeierstrassCurve.Jacobian.nonsingular_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) {u : R} (hu : IsUnit u) :
                            W'.Nonsingular (u β€’ P) ↔ W'.Nonsingular P
                            theorem WeierstrassCurve.Jacobian.nonsingular_of_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (h : P β‰ˆ Q) :
                            W'.Nonsingular P ↔ W'.Nonsingular Q
                            theorem WeierstrassCurve.Jacobian.nonsingular_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hPz : P 2 = 0) :
                            W'.Nonsingular P ↔ W'.Equation P ∧ (3 * P 0 ^ 2 β‰  0 ∨ 2 * P 1 β‰  0 ∨ W'.a₁ * P 0 * P 1 β‰  0)
                            theorem WeierstrassCurve.Jacobian.nonsingular_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [Nontrivial R] :
                            W'.Nonsingular ![1, 1, 0]
                            theorem WeierstrassCurve.Jacobian.nonsingular_some {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (X Y : R) :
                            W'.Nonsingular ![X, Y, 1] ↔ W'.toAffine.Nonsingular X Y
                            theorem WeierstrassCurve.Jacobian.nonsingular_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                            W.Nonsingular P ↔ W.toAffine.Nonsingular (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3)
                            theorem WeierstrassCurve.Jacobian.nonsingular_iff_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                            W.Nonsingular P ↔ W.Equation P ∧ ((MvPolynomial.eval P) W.polynomialX β‰  0 ∨ (MvPolynomial.eval P) W.polynomialY β‰  0)
                            theorem WeierstrassCurve.Jacobian.X_ne_zero_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P : Fin 3 β†’ R} (hP : W'.Nonsingular P) (hPz : P 2 = 0) :
                            P 0 β‰  0
                            theorem WeierstrassCurve.Jacobian.isUnit_X_of_Z_eq_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                            IsUnit (P 0)
                            theorem WeierstrassCurve.Jacobian.Y_ne_zero_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P : Fin 3 β†’ R} (hP : W'.Nonsingular P) (hPz : P 2 = 0) :
                            P 1 β‰  0
                            theorem WeierstrassCurve.Jacobian.isUnit_Y_of_Z_eq_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                            IsUnit (P 1)
                            theorem WeierstrassCurve.Jacobian.equiv_of_Z_eq_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) (hPz : P 2 = 0) (hQz : Q 2 = 0) :
                            P β‰ˆ Q
                            theorem WeierstrassCurve.Jacobian.equiv_zero_of_Z_eq_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                            P β‰ˆ ![1, 1, 0]

                            The proposition that a point class on W' is nonsingular. If P is a point representative, then W'.NonsingularLift ⟦P⟧ is definitionally equivalent to W'.Nonsingular P.

                            Equations
                            Instances For
                              theorem WeierstrassCurve.Jacobian.nonsingularLift_iff {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) :
                              W'.NonsingularLift ⟦P⟧ ↔ W'.Nonsingular P
                              theorem WeierstrassCurve.Jacobian.nonsingularLift_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [Nontrivial R] :
                              W'.NonsingularLift ⟦![1, 1, 0]⟧
                              theorem WeierstrassCurve.Jacobian.nonsingularLift_some {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (X Y : R) :
                              W'.NonsingularLift ⟦![X, Y, 1]⟧ ↔ W'.toAffine.Nonsingular X Y

                              Negation formulae #

                              def WeierstrassCurve.Jacobian.negY {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P : Fin 3 β†’ R) :
                              R

                              The $Y$-coordinate of the negation of a point representative.

                              Equations
                              • W'.negY P = -P 1 - W'.a₁ * P 0 * P 2 - W'.a₃ * P 2 ^ 3
                              Instances For
                                theorem WeierstrassCurve.Jacobian.negY_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) {u : R} :
                                W'.negY (u β€’ P) = u ^ 3 * W'.negY P
                                theorem WeierstrassCurve.Jacobian.negY_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hPz : P 2 = 0) :
                                W'.negY P = -P 1
                                theorem WeierstrassCurve.Jacobian.negY_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                                W.negY P / P 2 ^ 3 = W.toAffine.negY (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3)
                                theorem WeierstrassCurve.Jacobian.Y_sub_Y_mul_Y_sub_negY {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * (P 1 * Q 2 ^ 3 - W'.negY Q * P 2 ^ 3) = 0
                                theorem WeierstrassCurve.Jacobian.Y_eq_of_Y_ne {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  Q 1 * P 2 ^ 3) :
                                P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3
                                theorem WeierstrassCurve.Jacobian.Y_eq_of_Y_ne' {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  W.negY Q * P 2 ^ 3) :
                                P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3
                                theorem WeierstrassCurve.Jacobian.Y_eq_iff' {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) :
                                P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3 ↔ P 1 / P 2 ^ 3 = W.toAffine.negY (Q 0 / Q 2 ^ 2) (Q 1 / Q 2 ^ 3)
                                theorem WeierstrassCurve.Jacobian.Y_sub_Y_add_Y_sub_negY {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P Q : Fin 3 β†’ R) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3 + (P 1 * Q 2 ^ 3 - W'.negY Q * P 2 ^ 3) = (P 1 - W'.negY P) * Q 2 ^ 3
                                theorem WeierstrassCurve.Jacobian.Y_ne_negY_of_Y_ne {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  Q 1 * P 2 ^ 3) :
                                P 1 β‰  W'.negY P
                                theorem WeierstrassCurve.Jacobian.Y_ne_negY_of_Y_ne' {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  W'.negY Q * P 2 ^ 3) :
                                P 1 β‰  W'.negY P
                                theorem WeierstrassCurve.Jacobian.Y_eq_negY_of_Y_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                P 1 = W'.negY P
                                theorem WeierstrassCurve.Jacobian.nonsingular_iff_of_Y_eq_negY {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hy : P 1 = W.negY P) :
                                W.Nonsingular P ↔ W.Equation P ∧ (MvPolynomial.eval P) W.polynomialX β‰  0

                                Doubling formulae #

                                noncomputable def WeierstrassCurve.Jacobian.dblU {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P : Fin 3 β†’ R) :
                                R

                                The unit associated to the doubling of a 2-torsion point. More specifically, the unit u such that W.add P P = u β€’ ![1, 1, 0] where P = W.neg P.

                                Equations
                                Instances For
                                  theorem WeierstrassCurve.Jacobian.dblU_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) :
                                  W'.dblU P = W'.a₁ * P 1 * P 2 - (3 * P 0 ^ 2 + 2 * W'.aβ‚‚ * P 0 * P 2 ^ 2 + W'.aβ‚„ * P 2 ^ 4)
                                  theorem WeierstrassCurve.Jacobian.dblU_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) (u : R) :
                                  W'.dblU (u β€’ P) = u ^ 4 * W'.dblU P
                                  theorem WeierstrassCurve.Jacobian.dblU_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hPz : P 2 = 0) :
                                  W'.dblU P = -3 * P 0 ^ 2
                                  theorem WeierstrassCurve.Jacobian.dblU_ne_zero_of_Y_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Nonsingular P) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                  W.dblU P β‰  0
                                  theorem WeierstrassCurve.Jacobian.isUnit_dblU_of_Y_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Nonsingular P) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                  IsUnit (W.dblU P)
                                  def WeierstrassCurve.Jacobian.dblZ {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P : Fin 3 β†’ R) :
                                  R

                                  The $Z$-coordinate of the doubling of a point representative.

                                  Equations
                                  • W'.dblZ P = P 2 * (P 1 - W'.negY P)
                                  Instances For
                                    theorem WeierstrassCurve.Jacobian.dblZ_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) (u : R) :
                                    W'.dblZ (u β€’ P) = u ^ 4 * W'.dblZ P
                                    theorem WeierstrassCurve.Jacobian.dblZ_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hPz : P 2 = 0) :
                                    W'.dblZ P = 0
                                    theorem WeierstrassCurve.Jacobian.dblZ_of_Y_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                    W'.dblZ P = 0
                                    theorem WeierstrassCurve.Jacobian.dblZ_ne_zero_of_Y_ne {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  Q 1 * P 2 ^ 3) :
                                    W'.dblZ P β‰  0
                                    theorem WeierstrassCurve.Jacobian.isUnit_dblZ_of_Y_ne {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  Q 1 * P 2 ^ 3) :
                                    IsUnit (W.dblZ P)
                                    theorem WeierstrassCurve.Jacobian.dblZ_ne_zero_of_Y_ne' {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  W'.negY Q * P 2 ^ 3) :
                                    W'.dblZ P β‰  0
                                    theorem WeierstrassCurve.Jacobian.isUnit_dblZ_of_Y_ne' {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  W.negY Q * P 2 ^ 3) :
                                    IsUnit (W.dblZ P)
                                    noncomputable def WeierstrassCurve.Jacobian.dblX {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P : Fin 3 β†’ R) :
                                    R

                                    The $X$-coordinate of the doubling of a point representative.

                                    Equations
                                    • W'.dblX P = W'.dblU P ^ 2 - W'.a₁ * W'.dblU P * P 2 * (P 1 - W'.negY P) - W'.aβ‚‚ * P 2 ^ 2 * (P 1 - W'.negY P) ^ 2 - 2 * P 0 * (P 1 - W'.negY P) ^ 2
                                    Instances For
                                      theorem WeierstrassCurve.Jacobian.dblX_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) (u : R) :
                                      W'.dblX (u β€’ P) = (u ^ 4) ^ 2 * W'.dblX P
                                      theorem WeierstrassCurve.Jacobian.dblX_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                      W'.dblX P = (P 0 ^ 2) ^ 2
                                      theorem WeierstrassCurve.Jacobian.dblX_of_Y_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                      W'.dblX P = W'.dblU P ^ 2
                                      theorem WeierstrassCurve.Jacobian.dblX_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  W.negY Q * P 2 ^ 3) :
                                      W.dblX P / W.dblZ P ^ 2 = W.toAffine.addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                      noncomputable def WeierstrassCurve.Jacobian.negDblY {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P : Fin 3 β†’ R) :
                                      R

                                      The $Y$-coordinate of the negated doubling of a point representative.

                                      Equations
                                      • W'.negDblY P = -W'.dblU P * (W'.dblX P - P 0 * (P 1 - W'.negY P) ^ 2) + P 1 * (P 1 - W'.negY P) ^ 3
                                      Instances For
                                        theorem WeierstrassCurve.Jacobian.negDblY_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) (u : R) :
                                        W'.negDblY (u β€’ P) = (u ^ 4) ^ 3 * W'.negDblY P
                                        theorem WeierstrassCurve.Jacobian.negDblY_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                        W'.negDblY P = -(P 0 ^ 2) ^ 3
                                        theorem WeierstrassCurve.Jacobian.negDblY_of_Y_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                        W'.negDblY P = (-W'.dblU P) ^ 3
                                        theorem WeierstrassCurve.Jacobian.negDblY_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  W.negY Q * P 2 ^ 3) :
                                        W.negDblY P / W.dblZ P ^ 3 = W.toAffine.negAddY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                        noncomputable def WeierstrassCurve.Jacobian.dblY {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P : Fin 3 β†’ R) :
                                        R

                                        The $Y$-coordinate of the doubling of a point representative.

                                        Equations
                                        • W'.dblY P = W'.negY ![W'.dblX P, W'.negDblY P, W'.dblZ P]
                                        Instances For
                                          theorem WeierstrassCurve.Jacobian.dblY_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) (u : R) :
                                          W'.dblY (u β€’ P) = (u ^ 4) ^ 3 * W'.dblY P
                                          theorem WeierstrassCurve.Jacobian.dblY_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                          W'.dblY P = (P 0 ^ 2) ^ 3
                                          theorem WeierstrassCurve.Jacobian.dblY_of_Y_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                          W'.dblY P = W'.dblU P ^ 3
                                          theorem WeierstrassCurve.Jacobian.dblY_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  W.negY Q * P 2 ^ 3) :
                                          W.dblY P / W.dblZ P ^ 3 = W.toAffine.addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                          noncomputable def WeierstrassCurve.Jacobian.dblXYZ {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P : Fin 3 β†’ R) :
                                          Fin 3 β†’ R

                                          The coordinates of the doubling of a point representative.

                                          Equations
                                          • W'.dblXYZ P = ![W'.dblX P, W'.dblY P, W'.dblZ P]
                                          Instances For
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) (u : R) :
                                            W'.dblXYZ (u β€’ P) = u ^ 4 β€’ W'.dblXYZ P
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_of_Z_eq_zero {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                            W'.dblXYZ P = P 0 ^ 2 β€’ ![1, 1, 0]
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_of_Y_eq' {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3 β†’ R} (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                            W'.dblXYZ P = ![W'.dblU P ^ 2, W'.dblU P ^ 3, 0]
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_of_Y_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                            W.dblXYZ P = W.dblU P β€’ ![1, 1, 0]
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  W.negY Q * P 2 ^ 3) :
                                            W.dblXYZ P = W.dblZ P β€’ ![W.toAffine.addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), W.toAffine.addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]

                                            Addition formulae #

                                            def WeierstrassCurve.Jacobian.addU {F : Type v} [Field F] (P Q : Fin 3 β†’ F) :
                                            F

                                            The unit associated to the addition of a non-2-torsion point with its negation. More specifically, the unit u such that W.add P Q = u β€’ ![1, 1, 0] where P x / P z ^ 2 = Q x / Q z ^ 2 but P β‰  W.neg P.

                                            Equations
                                            Instances For
                                              theorem WeierstrassCurve.Jacobian.addU_smul {F : Type v} [Field F] {P Q : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) {u v : F} (hu : u β‰  0) (hv : v β‰  0) :
                                              theorem WeierstrassCurve.Jacobian.addU_of_Z_eq_zero_left {F : Type v} [Field F] {P Q : Fin 3 β†’ F} (hPz : P 2 = 0) :
                                              theorem WeierstrassCurve.Jacobian.addU_of_Z_eq_zero_right {F : Type v} [Field F] {P Q : Fin 3 β†’ F} (hQz : Q 2 = 0) :
                                              theorem WeierstrassCurve.Jacobian.addU_ne_zero_of_Y_ne {F : Type v} [Field F] {P Q : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hy : P 1 * Q 2 ^ 3 β‰  Q 1 * P 2 ^ 3) :
                                              theorem WeierstrassCurve.Jacobian.isUnit_addU_of_Y_ne {F : Type v} [Field F] {P Q : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hy : P 1 * Q 2 ^ 3 β‰  Q 1 * P 2 ^ 3) :
                                              def WeierstrassCurve.Jacobian.addZ {R : Type u} [CommRing R] (P Q : Fin 3 β†’ R) :
                                              R

                                              The $Z$-coordinate of the addition of two distinct point representatives.

                                              Equations
                                              Instances For
                                                theorem WeierstrassCurve.Jacobian.addZ_of_Z_eq_zero_left {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (hPz : P 2 = 0) :
                                                theorem WeierstrassCurve.Jacobian.addZ_of_Z_eq_zero_right {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (hQz : Q 2 = 0) :
                                                theorem WeierstrassCurve.Jacobian.addZ_of_X_eq {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                theorem WeierstrassCurve.Jacobian.addZ_ne_zero_of_X_ne {R : Type u} [CommRing R] {P Q : Fin 3 β†’ R} (hx : P 0 * Q 2 ^ 2 β‰  Q 0 * P 2 ^ 2) :
                                                theorem WeierstrassCurve.Jacobian.isUnit_addZ_of_X_ne {F : Type v} [Field F] {P Q : Fin 3 β†’ F} (hx : P 0 * Q 2 ^ 2 β‰  Q 0 * P 2 ^ 2) :
                                                def WeierstrassCurve.Jacobian.addX {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P Q : Fin 3 β†’ R) :
                                                R

                                                The $X$-coordinate of the addition of two distinct point representatives.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  theorem WeierstrassCurve.Jacobian.addX_self {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) :
                                                  W'.addX P P = 0
                                                  theorem WeierstrassCurve.Jacobian.addX_eq' {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hQ : W'.Equation Q) :
                                                  W'.addX P Q * (P 2 * Q 2) ^ 2 = (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) ^ 2 + W'.a₁ * (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * P 2 * Q 2 * WeierstrassCurve.Jacobian.addZ P Q - W'.aβ‚‚ * P 2 ^ 2 * Q 2 ^ 2 * WeierstrassCurve.Jacobian.addZ P Q ^ 2 - P 0 * Q 2 ^ 2 * WeierstrassCurve.Jacobian.addZ P Q ^ 2 - Q 0 * P 2 ^ 2 * WeierstrassCurve.Jacobian.addZ P Q ^ 2
                                                  theorem WeierstrassCurve.Jacobian.addX_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) :
                                                  W.addX P Q = ((P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) ^ 2 + W.a₁ * (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * P 2 * Q 2 * WeierstrassCurve.Jacobian.addZ P Q - W.aβ‚‚ * P 2 ^ 2 * Q 2 ^ 2 * WeierstrassCurve.Jacobian.addZ P Q ^ 2 - P 0 * Q 2 ^ 2 * WeierstrassCurve.Jacobian.addZ P Q ^ 2 - Q 0 * P 2 ^ 2 * WeierstrassCurve.Jacobian.addZ P Q ^ 2) / (P 2 * Q 2) ^ 2
                                                  theorem WeierstrassCurve.Jacobian.addX_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P Q : Fin 3 β†’ R) (u v : R) :
                                                  W'.addX (u β€’ P) (v β€’ Q) = ((u * v) ^ 2) ^ 2 * W'.addX P Q
                                                  theorem WeierstrassCurve.Jacobian.addX_of_Z_eq_zero_left {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hPz : P 2 = 0) :
                                                  W'.addX P Q = (P 0 * Q 2) ^ 2 * Q 0
                                                  theorem WeierstrassCurve.Jacobian.addX_of_Z_eq_zero_right {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hQz : Q 2 = 0) :
                                                  W'.addX P Q = (-(Q 0 * P 2)) ^ 2 * P 0
                                                  theorem WeierstrassCurve.Jacobian.addX_of_X_eq' {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                  W'.addX P Q * (P 2 * Q 2) ^ 2 = (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) ^ 2
                                                  theorem WeierstrassCurve.Jacobian.addX_of_X_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                  theorem WeierstrassCurve.Jacobian.addX_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 β‰  Q 0 * P 2 ^ 2) :
                                                  W.addX P Q / WeierstrassCurve.Jacobian.addZ P Q ^ 2 = W.toAffine.addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                                  def WeierstrassCurve.Jacobian.negAddY {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P Q : Fin 3 β†’ R) :
                                                  R

                                                  The $Y$-coordinate of the negated addition of two distinct point representatives.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    theorem WeierstrassCurve.Jacobian.negAddY_self {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} :
                                                    W'.negAddY P P = 0
                                                    theorem WeierstrassCurve.Jacobian.negAddY_eq' {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} :
                                                    W'.negAddY P Q * (P 2 * Q 2) ^ 3 = (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * (W'.addX P Q * (P 2 * Q 2) ^ 2 - P 0 * Q 2 ^ 2 * WeierstrassCurve.Jacobian.addZ P Q ^ 2) + P 1 * Q 2 ^ 3 * WeierstrassCurve.Jacobian.addZ P Q ^ 3
                                                    theorem WeierstrassCurve.Jacobian.negAddY_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) :
                                                    W.negAddY P Q = ((P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * (W.addX P Q * (P 2 * Q 2) ^ 2 - P 0 * Q 2 ^ 2 * WeierstrassCurve.Jacobian.addZ P Q ^ 2) + P 1 * Q 2 ^ 3 * WeierstrassCurve.Jacobian.addZ P Q ^ 3) / (P 2 * Q 2) ^ 3
                                                    theorem WeierstrassCurve.Jacobian.negAddY_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P Q : Fin 3 β†’ R) (u v : R) :
                                                    W'.negAddY (u β€’ P) (v β€’ Q) = ((u * v) ^ 2) ^ 3 * W'.negAddY P Q
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_Z_eq_zero_left {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                                    W'.negAddY P Q = (P 0 * Q 2) ^ 3 * W'.negY Q
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_Z_eq_zero_right {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
                                                    W'.negAddY P Q = (-(Q 0 * P 2)) ^ 3 * W'.negY P
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_X_eq' {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                    W'.negAddY P Q * (P 2 * Q 2) ^ 3 = (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) ^ 3
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_X_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                    W.negAddY P Q = (-WeierstrassCurve.Jacobian.addU P Q) ^ 3
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 β‰  Q 0 * P 2 ^ 2) :
                                                    W.negAddY P Q / WeierstrassCurve.Jacobian.addZ P Q ^ 3 = W.toAffine.negAddY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                                    def WeierstrassCurve.Jacobian.addY {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P Q : Fin 3 β†’ R) :
                                                    R

                                                    The $Y$-coordinate of the addition of two distinct point representatives.

                                                    Equations
                                                    Instances For
                                                      theorem WeierstrassCurve.Jacobian.addY_self {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) :
                                                      W'.addY P P = 0
                                                      theorem WeierstrassCurve.Jacobian.addY_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P Q : Fin 3 β†’ R) (u v : R) :
                                                      W'.addY (u β€’ P) (v β€’ Q) = ((u * v) ^ 2) ^ 3 * W'.addY P Q
                                                      theorem WeierstrassCurve.Jacobian.addY_of_Z_eq_zero_left {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                                      W'.addY P Q = (P 0 * Q 2) ^ 3 * Q 1
                                                      theorem WeierstrassCurve.Jacobian.addY_of_Z_eq_zero_right {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
                                                      W'.addY P Q = (-(Q 0 * P 2)) ^ 3 * P 1
                                                      theorem WeierstrassCurve.Jacobian.addY_of_X_eq' {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                      W'.addY P Q * (P 2 * Q 2) ^ 3 = (-(P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3)) ^ 3
                                                      theorem WeierstrassCurve.Jacobian.addY_of_X_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                      theorem WeierstrassCurve.Jacobian.addY_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 β‰  Q 0 * P 2 ^ 2) :
                                                      W.addY P Q / WeierstrassCurve.Jacobian.addZ P Q ^ 3 = W.toAffine.addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                                      noncomputable def WeierstrassCurve.Jacobian.addXYZ {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P Q : Fin 3 β†’ R) :
                                                      Fin 3 β†’ R

                                                      The coordinates of the addition of two distinct point representatives.

                                                      Equations
                                                      Instances For
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_self {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) :
                                                        W'.addXYZ P P = ![0, 0, 0]
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P Q : Fin 3 β†’ R) (u v : R) :
                                                        W'.addXYZ (u β€’ P) (v β€’ Q) = (u * v) ^ 2 β€’ W'.addXYZ P Q
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_of_Z_eq_zero_left {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                                        W'.addXYZ P Q = (P 0 * Q 2) β€’ Q
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_of_Z_eq_zero_right {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
                                                        W'.addXYZ P Q = -(Q 0 * P 2) β€’ P
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_of_X_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                        W.addXYZ P Q = WeierstrassCurve.Jacobian.addU P Q β€’ ![1, 1, 0]
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 β‰  Q 0 * P 2 ^ 2) :
                                                        W.addXYZ P Q = WeierstrassCurve.Jacobian.addZ P Q β€’ ![W.toAffine.addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), W.toAffine.addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]

                                                        Negation on point representatives #

                                                        def WeierstrassCurve.Jacobian.neg {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P : Fin 3 β†’ R) :
                                                        Fin 3 β†’ R

                                                        The negation of a point representative.

                                                        Equations
                                                        • W'.neg P = ![P 0, W'.negY P, P 2]
                                                        Instances For
                                                          theorem WeierstrassCurve.Jacobian.neg_smul {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) (u : R) :
                                                          W'.neg (u β€’ P) = u β€’ W'.neg P
                                                          theorem WeierstrassCurve.Jacobian.neg_smul_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) {u : R} (hu : IsUnit u) :
                                                          W'.neg (u β€’ P) β‰ˆ W'.neg P
                                                          theorem WeierstrassCurve.Jacobian.neg_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (h : P β‰ˆ Q) :
                                                          W'.neg P β‰ˆ W'.neg Q
                                                          theorem WeierstrassCurve.Jacobian.neg_of_Z_eq_zero' {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hPz : P 2 = 0) :
                                                          W'.neg P = ![P 0, -P 1, 0]
                                                          theorem WeierstrassCurve.Jacobian.neg_of_Z_eq_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                                                          W.neg P = -(P 1 / P 0) β€’ ![1, 1, 0]
                                                          theorem WeierstrassCurve.Jacobian.neg_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                                                          W.neg P = P 2 β€’ ![P 0 / P 2 ^ 2, W.toAffine.negY (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3), 1]
                                                          theorem WeierstrassCurve.Jacobian.nonsingular_neg {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hP : W.Nonsingular P) :
                                                          W.Nonsingular (W.neg P)
                                                          theorem WeierstrassCurve.Jacobian.addX_neg {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) :
                                                          W'.addX P (W'.neg P) = W'.dblZ P ^ 2
                                                          theorem WeierstrassCurve.Jacobian.negAddY_neg {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) :
                                                          W'.negAddY P (W'.neg P) = W'.dblZ P ^ 3
                                                          theorem WeierstrassCurve.Jacobian.addY_neg {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) :
                                                          W'.addY P (W'.neg P) = -W'.dblZ P ^ 3
                                                          theorem WeierstrassCurve.Jacobian.addXYZ_neg {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} (hP : W'.Equation P) :
                                                          W'.addXYZ P (W'.neg P) = -W'.dblZ P β€’ ![1, 1, 0]

                                                          The negation of a point class. If P is a point representative, then W'.negMap ⟦P⟧ is definitionally equivalent to W'.neg P.

                                                          Equations
                                                          Instances For
                                                            theorem WeierstrassCurve.Jacobian.negMap_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P : Fin 3 β†’ R} :
                                                            W'.negMap ⟦P⟧ = ⟦W'.neg P⟧
                                                            theorem WeierstrassCurve.Jacobian.negMap_of_Z_eq_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                                                            W.negMap ⟦P⟧ = ⟦![1, 1, 0]⟧
                                                            theorem WeierstrassCurve.Jacobian.negMap_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hPz : P 2 β‰  0) :
                                                            W.negMap ⟦P⟧ = ⟦![P 0 / P 2 ^ 2, W.toAffine.negY (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3), 1]⟧
                                                            theorem WeierstrassCurve.Jacobian.nonsingularLift_negMap {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : WeierstrassCurve.Jacobian.PointClass F} (hP : W.NonsingularLift P) :
                                                            W.NonsingularLift (W.negMap P)

                                                            Addition on point representatives #

                                                            noncomputable def WeierstrassCurve.Jacobian.add {R : Type u} (W' : WeierstrassCurve.Jacobian R) [CommRing R] (P Q : Fin 3 β†’ R) :
                                                            Fin 3 β†’ R

                                                            The addition of two point representatives.

                                                            Equations
                                                            • W'.add P Q = if P β‰ˆ Q then W'.dblXYZ P else W'.addXYZ P Q
                                                            Instances For
                                                              theorem WeierstrassCurve.Jacobian.add_of_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (h : P β‰ˆ Q) :
                                                              W'.add P Q = W'.dblXYZ P
                                                              theorem WeierstrassCurve.Jacobian.add_smul_of_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (h : P β‰ˆ Q) {u v : R} (hu : IsUnit u) (hv : IsUnit v) :
                                                              W'.add (u β€’ P) (v β€’ Q) = u ^ 4 β€’ W'.add P Q
                                                              theorem WeierstrassCurve.Jacobian.add_self {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P : Fin 3 β†’ R) :
                                                              W'.add P P = W'.dblXYZ P
                                                              theorem WeierstrassCurve.Jacobian.add_of_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (h : P = Q) :
                                                              W'.add P Q = W'.dblXYZ P
                                                              theorem WeierstrassCurve.Jacobian.add_of_not_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (h : Β¬P β‰ˆ Q) :
                                                              W'.add P Q = W'.addXYZ P Q
                                                              theorem WeierstrassCurve.Jacobian.add_smul_of_not_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (h : Β¬P β‰ˆ Q) {u v : R} (hu : IsUnit u) (hv : IsUnit v) :
                                                              W'.add (u β€’ P) (v β€’ Q) = (u * v) ^ 2 β€’ W'.add P Q
                                                              theorem WeierstrassCurve.Jacobian.add_smul_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P Q : Fin 3 β†’ R) {u v : R} (hu : IsUnit u) (hv : IsUnit v) :
                                                              W'.add (u β€’ P) (v β€’ Q) β‰ˆ W'.add P Q
                                                              theorem WeierstrassCurve.Jacobian.add_equiv {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P P' Q Q' : Fin 3 β†’ R} (hP : P β‰ˆ P') (hQ : Q β‰ˆ Q') :
                                                              W'.add P Q β‰ˆ W'.add P' Q'
                                                              theorem WeierstrassCurve.Jacobian.add_of_Z_eq_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) (hPz : P 2 = 0) (hQz : Q 2 = 0) :
                                                              W.add P Q = P 0 ^ 2 β€’ ![1, 1, 0]
                                                              theorem WeierstrassCurve.Jacobian.add_of_Z_eq_zero_left {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hP : W'.Equation P) (hPz : P 2 = 0) (hQz : Q 2 β‰  0) :
                                                              W'.add P Q = (P 0 * Q 2) β€’ Q
                                                              theorem WeierstrassCurve.Jacobian.add_of_Z_eq_zero_right {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {P Q : Fin 3 β†’ R} (hQ : W'.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 = 0) :
                                                              W'.add P Q = -(Q 0 * P 2) β€’ P
                                                              theorem WeierstrassCurve.Jacobian.add_of_Y_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                                              W.add P Q = W.dblU P β€’ ![1, 1, 0]
                                                              theorem WeierstrassCurve.Jacobian.add_of_Y_ne {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  Q 1 * P 2 ^ 3) :
                                                              W.add P Q = WeierstrassCurve.Jacobian.addU P Q β€’ ![1, 1, 0]
                                                              theorem WeierstrassCurve.Jacobian.add_of_Y_ne' {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 β‰  W.negY Q * P 2 ^ 3) :
                                                              W.add P Q = W.dblZ P β€’ ![W.toAffine.addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), W.toAffine.addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]
                                                              theorem WeierstrassCurve.Jacobian.add_of_X_ne {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 β‰  Q 0 * P 2 ^ 2) :
                                                              W.add P Q = WeierstrassCurve.Jacobian.addZ P Q β€’ ![W.toAffine.addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), W.toAffine.addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]
                                                              theorem WeierstrassCurve.Jacobian.nonsingular_add {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) :
                                                              W.Nonsingular (W.add P Q)

                                                              The addition of two point classes. If P is a point representative, then W.addMap ⟦P⟧ ⟦Q⟧ is definitionally equivalent to W.add P Q.

                                                              Equations
                                                              Instances For
                                                                theorem WeierstrassCurve.Jacobian.addMap_eq {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] (P Q : Fin 3 β†’ R) :
                                                                W'.addMap ⟦P⟧ ⟦Q⟧ = ⟦W'.add P Q⟧
                                                                theorem WeierstrassCurve.Jacobian.addMap_of_Z_eq_zero_left {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} {Q : WeierstrassCurve.Jacobian.PointClass F} (hP : W.Nonsingular P) (hQ : W.NonsingularLift Q) (hPz : P 2 = 0) :
                                                                W.addMap ⟦P⟧ Q = Q
                                                                theorem WeierstrassCurve.Jacobian.addMap_of_Z_eq_zero_right {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : WeierstrassCurve.Jacobian.PointClass F} {Q : Fin 3 β†’ F} (hP : W.NonsingularLift P) (hQ : W.Nonsingular Q) (hQz : Q 2 = 0) :
                                                                W.addMap P ⟦Q⟧ = P
                                                                theorem WeierstrassCurve.Jacobian.addMap_of_Y_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Nonsingular P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                                                W.addMap ⟦P⟧ ⟦Q⟧ = ⟦![1, 1, 0]⟧
                                                                theorem WeierstrassCurve.Jacobian.addMap_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : Fin 3 β†’ F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 β‰  0) (hQz : Q 2 β‰  0) (hxy : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2 β†’ P 1 * Q 2 ^ 3 β‰  W.negY Q * P 2 ^ 3) :
                                                                W.addMap ⟦P⟧ ⟦Q⟧ = ⟦![W.toAffine.addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), W.toAffine.addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (W.toAffine.slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]⟧
                                                                theorem WeierstrassCurve.Jacobian.nonsingularLift_addMap {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P Q : WeierstrassCurve.Jacobian.PointClass F} (hP : W.NonsingularLift P) (hQ : W.NonsingularLift Q) :
                                                                W.NonsingularLift (W.addMap P Q)

                                                                Nonsingular rational points #

                                                                A nonsingular rational point on W'.

                                                                • The point class underlying a nonsingular rational point on W'.

                                                                • nonsingular : W'.NonsingularLift self.point

                                                                  The nonsingular condition underlying a nonsingular rational point on W'.

                                                                Instances For
                                                                  theorem WeierstrassCurve.Jacobian.Point.ext {R : Type u} {W' : WeierstrassCurve.Jacobian R} {inst✝ : CommRing R} {x y : W'.Point} (point : x.point = y.point) :
                                                                  x = y
                                                                  Equations
                                                                  def WeierstrassCurve.Jacobian.Point.fromAffine {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] [Nontrivial R] :
                                                                  W'.toAffine.Point β†’ W'.Point

                                                                  The map from a nonsingular rational point on a Weierstrass curve W' in affine coordinates to the corresponding nonsingular rational point on W' in Jacobian coordinates.

                                                                  Equations
                                                                  Instances For
                                                                    def WeierstrassCurve.Jacobian.Point.neg {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} (P : W.Point) :
                                                                    W.Point

                                                                    The negation of a nonsingular rational point on W. Given a nonsingular rational point P on W, use -P instead of neg P.

                                                                    Equations
                                                                    Instances For
                                                                      Equations
                                                                      • WeierstrassCurve.Jacobian.Point.instNegPoint = { neg := WeierstrassCurve.Jacobian.Point.neg }
                                                                      theorem WeierstrassCurve.Jacobian.Point.neg_def {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} (P : W.Point) :
                                                                      -P = P.neg
                                                                      theorem WeierstrassCurve.Jacobian.Point.neg_point {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} (P : W.Point) :
                                                                      (-P).point = W.negMap P.point
                                                                      noncomputable def WeierstrassCurve.Jacobian.Point.add {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} (P Q : W.Point) :
                                                                      W.Point

                                                                      The addition of two nonsingular rational points on W. Given two nonsingular rational points P and Q on W, use P + Q instead of add P Q.

                                                                      Equations
                                                                      Instances For
                                                                        noncomputable instance WeierstrassCurve.Jacobian.Point.instAddPoint {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} :
                                                                        Add W.Point
                                                                        Equations
                                                                        • WeierstrassCurve.Jacobian.Point.instAddPoint = { add := WeierstrassCurve.Jacobian.Point.add }
                                                                        theorem WeierstrassCurve.Jacobian.Point.add_def {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} (P Q : W.Point) :
                                                                        P + Q = P.add Q
                                                                        theorem WeierstrassCurve.Jacobian.Point.add_point {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} (P Q : W.Point) :
                                                                        (P + Q).point = W.addMap P.point Q.point

                                                                        Equivalence with affine coordinates #

                                                                        noncomputable def WeierstrassCurve.Jacobian.Point.toAffine {F : Type v} [Field F] (W : WeierstrassCurve.Jacobian F) (P : Fin 3 β†’ F) :
                                                                        W.toAffine.Point

                                                                        The map from a point representative that is nonsingular on a Weierstrass curve W in Jacobian coordinates to the corresponding nonsingular rational point on W in affine coordinates.

                                                                        Equations
                                                                        Instances For
                                                                          noncomputable def WeierstrassCurve.Jacobian.Point.toAffineLift {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} (P : W.Point) :
                                                                          W.toAffine.Point

                                                                          The map from a nonsingular rational point on a Weierstrass curve W in Jacobian coordinates to the corresponding nonsingular rational point on W in affine coordinates.

                                                                          Equations
                                                                          Instances For
                                                                            theorem WeierstrassCurve.Jacobian.Point.toAffineLift_eq {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hP : W.NonsingularLift ⟦P⟧) :
                                                                            theorem WeierstrassCurve.Jacobian.Point.toAffineLift_of_Z_eq_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} (hP : W.NonsingularLift ⟦P⟧) (hPz : P 2 = 0) :
                                                                            theorem WeierstrassCurve.Jacobian.Point.toAffineLift_of_Z_ne_zero {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {P : Fin 3 β†’ F} {hP : W.NonsingularLift ⟦P⟧} (hPz : P 2 β‰  0) :
                                                                            theorem WeierstrassCurve.Jacobian.Point.toAffineLift_some {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} {X Y : F} (h : W.NonsingularLift ⟦![X, Y, 1]⟧) :
                                                                            theorem WeierstrassCurve.Jacobian.Point.toAffineLift_neg {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} (P : W.Point) :
                                                                            (-P).toAffineLift = -P.toAffineLift
                                                                            theorem WeierstrassCurve.Jacobian.Point.toAffineLift_add {F : Type v} [Field F] {W : WeierstrassCurve.Jacobian F} (P Q : W.Point) :
                                                                            (P + Q).toAffineLift = P.toAffineLift + Q.toAffineLift
                                                                            noncomputable def WeierstrassCurve.Jacobian.Point.toAffineAddEquiv {F : Type v} [Field F] (W : WeierstrassCurve.Jacobian F) :
                                                                            W.Point ≃+ W.toAffine.Point

                                                                            The equivalence between the nonsingular rational points on a Weierstrass curve W in Jacobian coordinates with the nonsingular rational points on W in affine coordinates.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For
                                                                              theorem WeierstrassCurve.Jacobian.map_smul {R : Type u} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P : Fin 3 β†’ R) (u : R) :
                                                                              ⇑f ∘ (u β€’ P) = f u β€’ ⇑f ∘ P
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_addZ {R : Type u} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P Q : Fin 3 β†’ R) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_addX {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P Q : Fin 3 β†’ R) :
                                                                              WeierstrassCurve.Jacobian.addX (WeierstrassCurve.map W' f) (⇑f ∘ P) (⇑f ∘ Q) = f (W'.addX P Q)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_negAddY {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P Q : Fin 3 β†’ R) :
                                                                              WeierstrassCurve.Jacobian.negAddY (WeierstrassCurve.map W' f) (⇑f ∘ P) (⇑f ∘ Q) = f (W'.negAddY P Q)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_negY {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P : Fin 3 β†’ R) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_neg {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P : Fin 3 β†’ R) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_addY {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P Q : Fin 3 β†’ R) :
                                                                              WeierstrassCurve.Jacobian.addY (WeierstrassCurve.map W' f) (⇑f ∘ P) (⇑f ∘ Q) = f (W'.addY P Q)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_addXYZ {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P Q : Fin 3 β†’ R) :
                                                                              WeierstrassCurve.Jacobian.addXYZ (WeierstrassCurve.map W' f) (⇑f ∘ P) (⇑f ∘ Q) = ⇑f ∘ W'.addXYZ P Q
                                                                              theorem WeierstrassCurve.Jacobian.map_polynomial {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) :
                                                                              (WeierstrassCurve.map W' f).toJacobian.polynomial = (MvPolynomial.map f) W'.polynomial
                                                                              theorem WeierstrassCurve.Jacobian.map_polynomialX {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) :
                                                                              (WeierstrassCurve.map W' f).toJacobian.polynomialX = (MvPolynomial.map f) W'.polynomialX
                                                                              theorem WeierstrassCurve.Jacobian.map_polynomialY {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) :
                                                                              (WeierstrassCurve.map W' f).toJacobian.polynomialY = (MvPolynomial.map f) W'.polynomialY
                                                                              theorem WeierstrassCurve.Jacobian.map_polynomialZ {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) :
                                                                              (WeierstrassCurve.map W' f).toJacobian.polynomialZ = (MvPolynomial.map f) W'.polynomialZ
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblZ {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P : Fin 3 β†’ R) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblU {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P : Fin 3 β†’ R) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblX {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P : Fin 3 β†’ R) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_negDblY {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P : Fin 3 β†’ R) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblY {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P : Fin 3 β†’ R) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblXYZ {R : Type u} {W' : WeierstrassCurve.Jacobian R} [CommRing R] {S : Type u_1} [CommRing S] (f : R β†’+* S) (P : Fin 3 β†’ R) :
                                                                              @[reducible, inline]

                                                                              An abbreviation for WeierstrassCurve.Jacobian.Point.fromAffine for dot notation.

                                                                              Equations
                                                                              Instances For