Quasi-affine schemes #
Main results #
IsQuasiAffine: A schemeXis quasi-affine if it is quasi-compact andX ⟶ Spec Γ(X, ⊤)is an immersion. This actually implies thatX ⟶ Spec Γ(X, ⊤)is an open immersion.IsQuasiAffine.of_isImmersion: Any quasi-compact locally closed subscheme of a quasi-affine scheme is quasi-affine.
class
AlgebraicGeometry.Scheme.IsQuasiAffine
(X : Scheme)
extends CompactSpace ↥X, AlgebraicGeometry.IsImmersion X.toSpecΓ :
A scheme X is quasi-affine if it is quasi-compact and X ⟶ Spec Γ(X, ⊤) is an immersion.
This actually implies that X ⟶ Spec Γ(X, ⊤) is an open immersion.
- surj_on_stalks (x : ↥X) : Function.Surjective ⇑(CategoryTheory.ConcreteCategory.hom (Scheme.Hom.stalkMap X.toSpecΓ x))
Instances
@[instance 100]
@[instance 100]
theorem
AlgebraicGeometry.Scheme.IsQuasiAffine.of_isImmersion
{X Y : Scheme}
(f : X ⟶ Y)
[Y.IsQuasiAffine]
[IsImmersion f]
[CompactSpace ↥X]
:
Any quasicompact locally closed subscheme of a quasi-affine scheme is quasi-affine.
theorem
AlgebraicGeometry.Scheme.IsQuasiAffine.isBasis_basicOpen
(X : Scheme)
[X.IsQuasiAffine]
:
TopologicalSpace.Opens.IsBasis
{x : TopologicalSpace.Opens ↥X | ∃ (r : ↑(X.presheaf.obj (Opposite.op ⊤))) (_ : IsAffineOpen (X.basicOpen r)), X.basicOpen r = x}
theorem
AlgebraicGeometry.Scheme.IsQuasiAffine.of_forall_exists_mem_basicOpen
(X : Scheme)
[CompactSpace ↥X]
(H : ∀ (x : ↥X), ∃ (r : ↑(X.presheaf.obj (Opposite.op ⊤))), IsAffineOpen (X.basicOpen r) ∧ x ∈ X.basicOpen r)
:
A quasi-compact scheme is quasi-affine if it can be covered by affine basic opens of global sections.
theorem
AlgebraicGeometry.Scheme.IsQuasiAffine.of_isAffineHom
{X Y : Scheme}
(f : X ⟶ Y)
[IsAffineHom f]
[Y.IsQuasiAffine]
: