Quasi-affine schemes #
Main results #
IsQuasiAffine
: A schemeX
is quasi-affine if it is quasi-compact andX ⟶ Spec Γ(X, ⊤)
is an open immersion.IsQuasiAffine.of_isImmersion
: Any quasi-compact locally closed subscheme of a quasi-affine scheme is quasi-affine.
class
AlgebraicGeometry.Scheme.IsQuasiAffine
(X : Scheme)
extends CompactSpace ↥X, AlgebraicGeometry.PresheafedSpace.IsOpenImmersion (AlgebraicGeometry.Scheme.Hom.toLRSHom X.toSpecΓ).toHom :
A scheme X
is quasi-affine if it is quasi-compact and X ⟶ Spec Γ(X, ⊤)
is an open immersion.
Despite the definition, any quasi-compact locally closed subscheme of an affine scheme is
quasi-affine. See IsQuasiAffine.of_isImmersion
- c_iso (U : TopologicalSpace.Opens ↥X) : CategoryTheory.IsIso ((Scheme.Hom.toLRSHom X.toSpecΓ).c.app (Opposite.op (⋯.functor.obj U)))
Instances
@[instance 100]
@[instance 100]
theorem
AlgebraicGeometry.Scheme.IsQuasiAffine.of_isImmersion
{X Y : Scheme}
(f : X ⟶ Y)
[Y.IsQuasiAffine]
[IsImmersion f]
[CompactSpace ↥X]
:
Any quasicompact locally closed subscheme of an quasi-affine scheme is quasi-affine.