Morphisms surjective on stalks #
We define the class of morphisms between schemes that are surjective on stalks. We show that this class is stable under composition and base change.
We also show that (AlgebraicGeometry.SurjectiveOnStalks.isEmbedding_pullback
)
if Y ⟶ S
is surjective on stalks, then for every X ⟶ S
, X ×ₛ Y
is a subset of
X × Y
(cartesian product as topological spaces) with the induced topology.
The class of morphisms f : X ⟶ Y
between schemes such that
𝒪_{Y, f x} ⟶ 𝒪_{X, x}
is surjective for all x : X
.
- surj_on_stalks (x : ↑↑X.toPresheafedSpace) : Function.Surjective ⇑(CategoryTheory.ConcreteCategory.hom (Scheme.Hom.stalkMap f x))
Instances
theorem
AlgebraicGeometry.surjectiveOnStalks_iff
{X Y : Scheme}
(f : X ⟶ Y)
:
SurjectiveOnStalks f ↔ ∀ (x : ↑↑X.toPresheafedSpace), Function.Surjective ⇑(CategoryTheory.ConcreteCategory.hom (Scheme.Hom.stalkMap f x))
theorem
AlgebraicGeometry.Scheme.Hom.stalkMap_surjective
{X Y : Scheme}
(f : X.Hom Y)
[SurjectiveOnStalks f]
(x : ↑↑X.toPresheafedSpace)
:
@[instance 900]
instance
AlgebraicGeometry.SurjectiveOnStalks.instOfIsOpenImmersion
{X Y : Scheme}
(f : X ⟶ Y)
[IsOpenImmersion f]
:
instance
AlgebraicGeometry.SurjectiveOnStalks.comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[SurjectiveOnStalks f]
[SurjectiveOnStalks g]
:
theorem
AlgebraicGeometry.SurjectiveOnStalks.eq_stalkwise :
@SurjectiveOnStalks = stalkwise fun {R S : Type u_1} [CommRing R] [CommRing S] (x : R →+* S) => Function.Surjective ⇑x
instance
AlgebraicGeometry.SurjectiveOnStalks.instHasRingHomPropertySurjectiveOnStalks :
HasRingHomProperty @SurjectiveOnStalks fun {R S : Type u_1} [CommRing R] [CommRing S] => RingHom.SurjectiveOnStalks
theorem
AlgebraicGeometry.SurjectiveOnStalks.iff_of_isAffine
{X Y : Scheme}
{f : X ⟶ Y}
[IsAffine X]
[IsAffine Y]
:
theorem
AlgebraicGeometry.SurjectiveOnStalks.of_comp
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[SurjectiveOnStalks (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
AlgebraicGeometry.SurjectiveOnStalks.isEmbedding_pullback
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[SurjectiveOnStalks g]
:
If Y ⟶ S
is surjective on stalks, then for every X ⟶ S
, X ×ₛ Y
is a subset of
X × Y
(cartesian product as topological spaces) with the induced topology.