Documentation

Mathlib.AlgebraicGeometry.Morphisms.Separated

Separated morphisms #

A morphism of schemes is separated if its diagonal morphism is a closed immmersion.

Main definitions #

class AlgebraicGeometry.IsSeparated {X Y : Scheme} (f : X Y) :

A morphism is separated if the diagonal map is a closed immersion.

Instances
    @[instance 900]

    Monomorphisms are separated.

    @[instance 100]

    Given f : X ⟶ Y and g : Y ⟶ Z such that g is separated, the induced map X ⟶ X ×[Z] Y is a closed immersion.

    theorem AlgebraicGeometry.Scheme.Pullback.diagonalCoverDiagonalRange_eq_top_of_injective {X Y : Scheme} (f : X Y) (𝒰 : Y.OpenCover) (𝒱 : (i : 𝒰.J) → (CategoryTheory.Limits.pullback f (𝒰.map i)).OpenCover) (hf : Function.Injective f.base) :
    theorem AlgebraicGeometry.Scheme.Pullback.range_diagonal_subset_diagonalCoverDiagonalRange {X Y : Scheme} (f : X Y) (𝒰 : Y.OpenCover) (𝒱 : (i : 𝒰.J) → (CategoryTheory.Limits.pullback f (𝒰.map i)).OpenCover) :
    theorem AlgebraicGeometry.isClosedImmersion_diagonal_restrict_diagonalCoverDiagonalRange {X Y : Scheme} (f : X Y) (𝒰 : Y.OpenCover) (𝒱 : (i : 𝒰.J) → (CategoryTheory.Limits.pullback f (𝒰.map i)).OpenCover) [∀ (i : 𝒰.J), IsAffine (𝒰.obj i)] [∀ (i : 𝒰.J) (j : (𝒱 i).J), IsAffine ((𝒱 i).obj j)] :

    Suppose X is a reduced scheme and that f g : X ⟶ Y agree over some separated Y ⟶ Z. Then f = g if ι ≫ f = ι ≫ g for some dominant ι.

    Suppose X is a reduced S-scheme and Y is a separated S-scheme. For any S-morphisms f g : X ⟶ Y, f = g if ι ≫ f = ι ≫ g for some dominant ι.

    A scheme X is separated if it is separated over ⊤_ Scheme.

    Instances
      @[instance 900]
      @[instance 900]
      instance AlgebraicGeometry.Scheme.instIsSeparatedOfIsSeparated {X Y : Scheme} (f : X Y) [X.IsSeparated] :
      theorem AlgebraicGeometry.ext_of_isDominant {W X Y : Scheme} [IsReduced X] {f g : X Y} [Y.IsSeparated] (ι : W X) [IsDominant ι] (hU : CategoryTheory.CategoryStruct.comp ι f = CategoryTheory.CategoryStruct.comp ι g) :
      f = g

      Suppose f g : X ⟶ Y where X is a reduced scheme and Y is a separated scheme. Then f = g if ι ≫ f = ι ≫ g for some dominant ι.

      Also see ext_of_isDominant_of_isSeparated for the general version over arbitrary bases.