Documentation

Mathlib.AlgebraicGeometry.IdealSheaf.Basic

Ideal sheaves on schemes #

We define ideal sheaves of schemes and provide various constructors for it.

Main definition #

Main results #

Implementation detail #

Ideal sheaves are not yet defined in this file as actual subsheaves of š’Ŗā‚“. Instead, for the ease of development and application, we define the structure IdealSheafData containing all necessary data to uniquely define an ideal sheaf. This should be refactored as a constructor for ideal sheaves once they are introduced into mathlib.

A structure that contains the data to uniquely define an ideal sheaf, consisting of

  1. an ideal I(U) ≤ Ī“(X, U) for every affine open U
  2. a proof that I(D(f)) = I(U)_f for every affine open U and every section f : Ī“(X, U)
  3. a subset of X equal to the support.

Also see Scheme.IdealSheafData.mkOfMemSupportIff for a constructor with the condition on the support being (usually) easier to prove.

Instances For
    Equations
    • One or more equations did not get rendered due to their size.

    The largest ideal sheaf contained in a family of ideals.

    Equations
    Instances For

      The Galois coinsertion between ideal sheaves and arbitrary families of ideals.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        Equations
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        @[simp]
        @[simp]
        theorem AlgebraicGeometry.Scheme.IdealSheafData.ideal_iSup {X : Scheme} {ι : Type u_1} {I : ι → X.IdealSheafData} :
        (iSup I).ideal = ⨆ (i : ι), (I i).ideal
        @[simp]
        @[simp]
        theorem AlgebraicGeometry.Scheme.IdealSheafData.ideal_biInf {X : Scheme} {ι : Type u_1} (I : ι → X.IdealSheafData) {s : Set ι} (hs : s.Finite) :
        (⨅ i ∈ s, I i).ideal = ⨅ i ∈ s, (I i).ideal
        @[simp]
        theorem AlgebraicGeometry.Scheme.IdealSheafData.ideal_iInf {X : Scheme} {ι : Type u_1} (I : ι → X.IdealSheafData) [Finite ι] :
        (⨅ (i : ι), I i).ideal = ⨅ (i : ι), (I i).ideal

        A form of map_ideal that is easier to rewrite with.

        theorem AlgebraicGeometry.Scheme.IdealSheafData.mem_supportSet_iff_of_mem {X : Scheme} {I : X.IdealSheafData} {x : ↄX} {U : ↑X.affineOpens} (hxU : x ∈ ↑U) :
        theorem AlgebraicGeometry.Scheme.IdealSheafData.supportSet_inter {X : Scheme} (I : X.IdealSheafData) (U : ↑X.affineOpens) :
        I.supportSet ∩ ↑↑U = X.zeroLocus ↑(I.ideal U) ∩ ↑↑U

        The support of an ideal sheaf. Also see IdealSheafData.mem_support_iff_of_mem.

        Equations
        Instances For
          theorem AlgebraicGeometry.Scheme.IdealSheafData.mem_support_iff {X : Scheme} {I : X.IdealSheafData} {x : ↄX} :
          x ∈ I.support ↔ āˆ€ (U : ↑X.affineOpens), x ∈ X.zeroLocus ↑(I.ideal U)
          theorem AlgebraicGeometry.Scheme.IdealSheafData.mem_support_iff_of_mem {X : Scheme} {I : X.IdealSheafData} {x : ↄX} {U : ↑X.affineOpens} (h : x ∈ ↑U) :
          theorem AlgebraicGeometry.Scheme.IdealSheafData.coe_support_inter {X : Scheme} (I : X.IdealSheafData) (U : ↑X.affineOpens) :
          ↑I.support ∩ ↑↑U = X.zeroLocus ↑(I.ideal U) ∩ ↑↑U
          def AlgebraicGeometry.Scheme.IdealSheafData.mkOfMemSupportIff {X : Scheme} (ideal : (U : ↑X.affineOpens) → Ideal ↑(X.presheaf.obj (Opposite.op ↑U))) (map_ideal_basicOpen : āˆ€ (U : ↑X.affineOpens) (f : ↑(X.presheaf.obj (Opposite.op ↑U))), Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (CategoryTheory.homOfLE ⋯).op)) (ideal U) = ideal (X.affineBasicOpen f)) (supportSet : Set ↄX) (supportSet_inter : āˆ€ (U : ↑X.affineOpens), āˆ€ x ∈ ↑U, x ∈ supportSet ↔ x ∈ X.zeroLocus ↑(ideal U)) :

          A useful constructor of IdealSheafData with the condition on supportSet being easier to check.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.IdealSheafData.mkOfMemSupportIff_ideal {X : Scheme} (ideal : (U : ↑X.affineOpens) → Ideal ↑(X.presheaf.obj (Opposite.op ↑U))) (map_ideal_basicOpen : āˆ€ (U : ↑X.affineOpens) (f : ↑(X.presheaf.obj (Opposite.op ↑U))), Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (CategoryTheory.homOfLE ⋯).op)) (ideal U) = ideal (X.affineBasicOpen f)) (supportSet : Set ↄX) (supportSet_inter : āˆ€ (U : ↑X.affineOpens), āˆ€ x ∈ ↑U, x ∈ supportSet ↔ x ∈ X.zeroLocus ↑(ideal U)) (U : ↑X.affineOpens) :
            (mkOfMemSupportIff ideal map_ideal_basicOpen supportSet supportSet_inter).ideal U = ideal U
            @[simp]
            theorem AlgebraicGeometry.Scheme.IdealSheafData.coe_support_mkOfMemSupportIff {X : Scheme} (ideal : (U : ↑X.affineOpens) → Ideal ↑(X.presheaf.obj (Opposite.op ↑U))) (map_ideal_basicOpen : āˆ€ (U : ↑X.affineOpens) (f : ↑(X.presheaf.obj (Opposite.op ↑U))), Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (CategoryTheory.homOfLE ⋯).op)) (ideal U) = ideal (X.affineBasicOpen f)) (supportSet : Set ↄX) (supportSet_inter : āˆ€ (U : ↑X.affineOpens), āˆ€ x ∈ ↑U, x ∈ supportSet ↔ x ∈ X.zeroLocus ↑(ideal U)) :
            ↑(mkOfMemSupportIff ideal map_ideal_basicOpen supportSet supportSet_inter).support = supportSet

            The ideal sheaf induced by an ideal of the global sections.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Over affine schemes, ideal sheaves are in bijection with ideals of the global sections.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[deprecated AlgebraicGeometry.Scheme.zeroLocus_radical (since := "2025-08-10")]

                Alias of AlgebraicGeometry.Scheme.zeroLocus_radical.

                The radical of a ideal sheaf.

                Equations
                Instances For

                  The nilradical of a scheme.

                  Equations
                  Instances For

                    The vanishing ideal sheaf of a closed set, which is the largest ideal sheaf whose support is equal to it. The reduced induced scheme structure on the closed set is the quotient of this ideal.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[deprecated AlgebraicGeometry.Scheme.IdealSheafData.le_support_iff_le_vanishingIdeal (since := "2025-05-16")]

                      Alias of AlgebraicGeometry.Scheme.IdealSheafData.le_support_iff_le_vanishingIdeal.

                      support and vanishingIdeal forms a Galois connection. This is the global version of PrimeSpectrum.gc.

                      @[simp]
                      theorem AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_iSup {X : Scheme} {ι : Sort u_1} (Z : ι → TopologicalSpace.Closeds ↄX) :
                      vanishingIdeal (iSup Z) = ⨅ (i : ι), vanishingIdeal (Z i)
                      @[simp]
                      theorem AlgebraicGeometry.Scheme.IdealSheafData.support_iSup {X : Scheme} {ι : Sort u_1} (I : ι → X.IdealSheafData) :
                      (iSup I).support = ⨅ (i : ι), (I i).support

                      The kernel of a morphism, defined as the largest (quasi-coherent) ideal sheaf contained in the component-wise kernel. This is usually only well-behaved when f is quasi-compact.

                      Equations
                      Instances For
                        @[simp]
                        theorem AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp_apply {X Y : Scheme} (f : X.Hom Y) [QuasiCompact f] (š’° : X.OpenCover) (U : ↑Y.affineOpens) :
                        ⨅ (i : š’°.Iā‚€), (ker (CategoryTheory.CategoryStruct.comp (š’°.f i) f)).ideal U = f.ker.ideal U
                        theorem AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp {X Y : Scheme} (f : X ⟶ Y) [QuasiCompact f] (š’° : X.OpenCover) :
                        ⨅ (i : š’°.Iā‚€), ker (CategoryTheory.CategoryStruct.comp (š’°.f i) f) = ker f
                        theorem AlgebraicGeometry.Scheme.Hom.iUnion_support_ker_openCover_map_comp {X Y : Scheme} (f : X.Hom Y) [QuasiCompact f] (š’° : X.OpenCover) [Finite š’°.Iā‚€] :
                        ā‹ƒ (i : š’°.Iā‚€), ↑(ker (CategoryTheory.CategoryStruct.comp (š’°.f i) f)).support = ↑f.ker.support
                        theorem AlgebraicGeometry.Scheme.ker_morphismRestrict_ideal {X Y : Scheme} (f : X.Hom Y) [QuasiCompact f] (U : Y.Opens) (V : ↑(↑U).affineOpens) :

                        The functor taking a morphism into Y to its kernel as an ideal sheaf on Y.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For