Documentation

Mathlib.AlgebraicGeometry.IdealSheaf.Basic

Ideal sheaves on schemes #

We define ideal sheaves of schemes and provide various constructors for it.

Main definition #

Main results #

Implementation detail #

Ideal sheaves are not yet defined in this file as actual subsheaves of ๐’ชโ‚“. Instead, for the ease of development and application, we define the structure IdealSheafData containing all necessary data to uniquely define an ideal sheaf. This should be refactored as a constructor for ideal sheaves once they are introduced into mathlib.

A structure that contains the data to uniquely define an ideal sheaf, consisting of

  1. an ideal I(U) โ‰ค ฮ“(X, U) for every affine open U
  2. a proof that I(D(f)) = I(U)_f for every affine open U and every section f : ฮ“(X, U)
  3. a subset of X equal to the support.

Also see Scheme.IdealSheafData.mkOfMemSupportIff for a constructor with the condition on the support being (usually) easier to prove.

Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    def AlgebraicGeometry.Scheme.IdealSheafData.ofIdeals {X : Scheme} (I : (U : โ†‘X.affineOpens) โ†’ Ideal โ†‘(X.presheaf.obj (Opposite.op โ†‘U))) :

    The largest ideal sheaf contained in a family of ideals.

    Equations
    Instances For

      The galois coinsertion between ideal sheaves and arbitrary families of ideals.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        Equations
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        @[simp]
        theorem AlgebraicGeometry.Scheme.IdealSheafData.ideal_sup {X : Scheme} {I J : X.IdealSheafData} :
        (I โŠ” J).ideal = I.ideal โŠ” J.ideal
        @[simp]
        theorem AlgebraicGeometry.Scheme.IdealSheafData.ideal_iSup {X : Scheme} {ฮน : Type u_1} {I : ฮน โ†’ X.IdealSheafData} :
        (iSup I).ideal = โจ† (i : ฮน), (I i).ideal
        @[simp]
        theorem AlgebraicGeometry.Scheme.IdealSheafData.ideal_inf {X : Scheme} {I J : X.IdealSheafData} :
        (I โŠ“ J).ideal = I.ideal โŠ“ J.ideal
        @[simp]
        theorem AlgebraicGeometry.Scheme.IdealSheafData.ideal_biInf {X : Scheme} {ฮน : Type u_1} (I : ฮน โ†’ X.IdealSheafData) {s : Set ฮน} (hs : s.Finite) :
        (โจ… i โˆˆ s, I i).ideal = โจ… i โˆˆ s, (I i).ideal
        @[simp]
        theorem AlgebraicGeometry.Scheme.IdealSheafData.ideal_iInf {X : Scheme} {ฮน : Type u_1} (I : ฮน โ†’ X.IdealSheafData) [Finite ฮน] :
        (โจ… (i : ฮน), I i).ideal = โจ… (i : ฮน), (I i).ideal

        A form of map_ideal that is easier to rewrite with.

        theorem AlgebraicGeometry.Scheme.IdealSheafData.supportSet_inter {X : Scheme} (I : X.IdealSheafData) (U : โ†‘X.affineOpens) :
        I.supportSet โˆฉ โ†‘โ†‘U = X.zeroLocus โ†‘(I.ideal U) โˆฉ โ†‘โ†‘U

        The support of an ideal sheaf. Also see IdealSheafData.mem_support_iff_of_mem.

        Equations
        Instances For
          theorem AlgebraicGeometry.Scheme.IdealSheafData.coe_support_inter {X : Scheme} (I : X.IdealSheafData) (U : โ†‘X.affineOpens) :
          โ†‘I.support โˆฉ โ†‘โ†‘U = X.zeroLocus โ†‘(I.ideal U) โˆฉ โ†‘โ†‘U
          def AlgebraicGeometry.Scheme.IdealSheafData.mkOfMemSupportIff {X : Scheme} (ideal : (U : โ†‘X.affineOpens) โ†’ Ideal โ†‘(X.presheaf.obj (Opposite.op โ†‘U))) (map_ideal_basicOpen : โˆ€ (U : โ†‘X.affineOpens) (f : โ†‘(X.presheaf.obj (Opposite.op โ†‘U))), Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (CategoryTheory.homOfLE โ‹ฏ).op)) (ideal U) = ideal (X.affineBasicOpen f)) (supportSet : Set โ†‘โ†‘X.toPresheafedSpace) (supportSet_inter : โˆ€ (U : โ†‘X.affineOpens), โˆ€ x โˆˆ โ†‘U, x โˆˆ supportSet โ†” x โˆˆ X.zeroLocus โ†‘(ideal U)) :

          A useful constructor of IdealSheafData with the condition on supportSet being easier to check.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.IdealSheafData.coe_support_mkOfMemSupportIff {X : Scheme} (ideal : (U : โ†‘X.affineOpens) โ†’ Ideal โ†‘(X.presheaf.obj (Opposite.op โ†‘U))) (map_ideal_basicOpen : โˆ€ (U : โ†‘X.affineOpens) (f : โ†‘(X.presheaf.obj (Opposite.op โ†‘U))), Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (CategoryTheory.homOfLE โ‹ฏ).op)) (ideal U) = ideal (X.affineBasicOpen f)) (supportSet : Set โ†‘โ†‘X.toPresheafedSpace) (supportSet_inter : โˆ€ (U : โ†‘X.affineOpens), โˆ€ x โˆˆ โ†‘U, x โˆˆ supportSet โ†” x โˆˆ X.zeroLocus โ†‘(ideal U)) :
            โ†‘(mkOfMemSupportIff ideal map_ideal_basicOpen supportSet supportSet_inter).support = supportSet
            @[simp]
            theorem AlgebraicGeometry.Scheme.IdealSheafData.mkOfMemSupportIff_ideal {X : Scheme} (ideal : (U : โ†‘X.affineOpens) โ†’ Ideal โ†‘(X.presheaf.obj (Opposite.op โ†‘U))) (map_ideal_basicOpen : โˆ€ (U : โ†‘X.affineOpens) (f : โ†‘(X.presheaf.obj (Opposite.op โ†‘U))), Ideal.map (CommRingCat.Hom.hom (X.presheaf.map (CategoryTheory.homOfLE โ‹ฏ).op)) (ideal U) = ideal (X.affineBasicOpen f)) (supportSet : Set โ†‘โ†‘X.toPresheafedSpace) (supportSet_inter : โˆ€ (U : โ†‘X.affineOpens), โˆ€ x โˆˆ โ†‘U, x โˆˆ supportSet โ†” x โˆˆ X.zeroLocus โ†‘(ideal U)) (U : โ†‘X.affineOpens) :
            (mkOfMemSupportIff ideal map_ideal_basicOpen supportSet supportSet_inter).ideal U = ideal U

            The ideal sheaf induced by an ideal of the global sections.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Over affine schemes, ideal sheaves are in bijection with ideals of the global sections.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The radical of a ideal sheaf.

                Equations
                Instances For

                  The nilradical of a scheme.

                  Equations
                  Instances For

                    The vanishing ideal sheaf of a closed set, which is the largest ideal sheaf whose support is equal to it. The reduced induced scheme structure on the closed set is the quotient of this ideal.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      support and vanishingIdeal forms a galois connection. This is the global version of PrimeSpectrum.gc.

                      The kernel of a morphism, defined as the largest (quasi-coherent) ideal sheaf contained in the component-wise kernel. This is usually only well-behaved when f is quasi-compact.

                      Equations
                      Instances For
                        @[simp]
                        theorem AlgebraicGeometry.Scheme.Hom.ker_apply {X Y : Scheme} (f : X.Hom Y) [QuasiCompact f] (U : โ†‘Y.affineOpens) :
                        theorem AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp_apply {X Y : Scheme} (f : X.Hom Y) [QuasiCompact f] (๐’ฐ : X.OpenCover) (U : โ†‘Y.affineOpens) :
                        โจ… (i : ๐’ฐ.J), (ker (CategoryTheory.CategoryStruct.comp (๐’ฐ.map i) f)).ideal U = f.ker.ideal U
                        theorem AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp {X Y : Scheme} (f : X โŸถ Y) [QuasiCompact f] (๐’ฐ : X.OpenCover) :
                        โจ… (i : ๐’ฐ.J), ker (CategoryTheory.CategoryStruct.comp (๐’ฐ.map i) f) = ker f
                        theorem AlgebraicGeometry.Scheme.Hom.iUnion_support_ker_openCover_map_comp {X Y : Scheme} (f : X.Hom Y) [QuasiCompact f] (๐’ฐ : X.OpenCover) [Finite ๐’ฐ.J] :
                        โ‹ƒ (i : ๐’ฐ.J), โ†‘(ker (CategoryTheory.CategoryStruct.comp (๐’ฐ.map i) f)).support = โ†‘f.ker.support
                        theorem AlgebraicGeometry.Scheme.ker_morphismRestrict_ideal {X Y : Scheme} (f : X.Hom Y) [QuasiCompact f] (U : Y.Opens) (V : โ†‘(โ†‘U).affineOpens) :

                        The functor taking a morphism into Y to its kernel as an ideal sheaf on Y.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For