Documentation

Mathlib.AlgebraicGeometry.Sites.Small

Small sites #

In this file we define the small sites associated to morphism properties and give generating pretopologies.

Main definitions #

The presieve defined by a P-cover of S-schemes.

Equations
Instances For
    def AlgebraicGeometry.Scheme.Cover.toPresieveOverProp {P Q : CategoryTheory.MorphismProperty Scheme} {S : Scheme} {X : Q.Over S} (𝒰 : Cover P X.left) [Cover.Over S 𝒰] (h : ∀ (j : 𝒰.J), Q (𝒰.obj j S)) :

    The presieve defined by a P-cover of S-schemes with Q.

    Equations
    Instances For

      The pretopology on Over S induced by P where coverings are given by P-covers of S-schemes.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[reducible, inline]

        The topology on Over S induced from the topology on Scheme defined by P. This agrees with the topology induced by S.overPretopology P, see AlgebraicGeometry.Scheme.overGrothendieckTopology_eq_toGrothendieck_overPretopology.

        Equations
        Instances For
          theorem AlgebraicGeometry.Scheme.mem_overGrothendieckTopology (P : CategoryTheory.MorphismProperty Scheme) {S : Scheme} [P.IsMultiplicative] [P.RespectsIso] [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P] (X : CategoryTheory.Over S) (R : CategoryTheory.Sieve X) :
          R (overGrothendieckTopology P S) X ∃ (𝒰 : Cover P X.left) (x : Cover.Over S 𝒰), 𝒰.toPresieveOver R.arrows
          theorem AlgebraicGeometry.Scheme.locallyCoverDense_of_le {P Q : CategoryTheory.MorphismProperty Scheme} (S : Scheme) [P.IsMultiplicative] [P.RespectsIso] [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P] [Q.IsStableUnderComposition] (hPQ : P Q) :
          @[reducible, inline]
          abbrev AlgebraicGeometry.Scheme.smallGrothendieckTopologyOfLE {P Q : CategoryTheory.MorphismProperty Scheme} (S : Scheme) [P.IsMultiplicative] [P.RespectsIso] [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P] [Q.IsStableUnderComposition] (hPQ : P Q) :

          If P and Q are morphism properties with P ≤ Q, this is the Grothendieck topology induced via the forgetful functor Q.Over ⊤ S ⥤ Over S by the topology defined by P.

          Equations
          Instances For
            @[reducible, inline]

            The Grothendieck topology on the category of schemes over S with P induced by P, i.e. coverings are simply surjective families. This is the induced topology by the topology on S defined by P via the inclusion P.Over ⊤ S ⥤ Over S.

            This is a special case of smallGrothendieckTopologyOfLE for the case P = Q.

            Equations
            Instances For
              def AlgebraicGeometry.Scheme.smallPretopology (P Q : CategoryTheory.MorphismProperty Scheme) {S : Scheme} [P.IsMultiplicative] [P.RespectsIso] [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P] [Q.IsStableUnderComposition] [Q.IsStableUnderBaseChange] [Q.HasOfPostcompProperty Q] :

              The pretopology defined on the subcategory of S-schemes satisfying Q where coverings are given by P-coverings in S-schemes satisfying Q. The most common case is P = Q. In this case, this is simply surjective families in S-schemes with P.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem AlgebraicGeometry.Scheme.smallGrothendieckTopologyOfLE_eq_toGrothendieck_smallPretopology {P Q : CategoryTheory.MorphismProperty Scheme} (S : Scheme) [P.IsMultiplicative] [P.RespectsIso] [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P] [Q.IsStableUnderComposition] [Q.IsStableUnderBaseChange] [Q.HasOfPostcompProperty Q] (hPQ : P Q) :
                S.smallGrothendieckTopologyOfLE hPQ = CategoryTheory.Pretopology.toGrothendieck (Q.Over S) (smallPretopology P Q)
                theorem AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology {P Q : CategoryTheory.MorphismProperty Scheme} {S : Scheme} [P.IsMultiplicative] [P.RespectsIso] [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P] [Q.IsStableUnderComposition] [Q.IsStableUnderBaseChange] [Q.HasOfPostcompProperty Q] (X : Q.Over S) (R : CategoryTheory.Sieve X) :
                R (CategoryTheory.Pretopology.toGrothendieck (Q.Over S) (smallPretopology P Q)) X ∀ (x : X.left.toPresheafedSpace), ∃ (Y : Q.Over S) (f : Y X) (y : Y.left.toPresheafedSpace), R.arrows f P f.left f.left.base y = x
                theorem AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology {P : CategoryTheory.MorphismProperty Scheme} {S : Scheme} [P.IsMultiplicative] [P.RespectsIso] [P.IsStableUnderBaseChange] [IsJointlySurjectivePreserving P] [P.HasOfPostcompProperty P] (X : P.Over S) (R : CategoryTheory.Sieve X) :
                R (smallGrothendieckTopology P) X ∃ (𝒰 : Cover P X.left) (x : Cover.Over S 𝒰) (h : ∀ (j : 𝒰.J), P (𝒰.obj j S)), 𝒰.toPresieveOverProp h R.arrows