Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Coskeletal

Coskeletal simplicial sets #

In this file, we prove that if X is StrictSegal then X is 2-coskeletal, i.e. X ≅ (cosk 2).obj X. In particular, nerves of categories are 2-coskeletal.

This isomorphism follows from the fact that rightExtensionInclusion X 2 is a right Kan extension. In fact, we show that when X is StrictSegal then (rightExtensionInclusion X n).IsPointwiseRightKanExtension holds.

As an example, SimplicialObject.IsCoskeletal (nerve C) 2 shows that that nerves of categories are 2-coskeletal.

The identity natural transformation exhibits a simplicial set as a right extension of its restriction along (Truncated.inclusion (n := n)).op.

Equations
Instances For
    @[simp]
    theorem SSet.Truncated.rightExtensionInclusion_hom_app (X : SSet) (n : ) (X✝ : (SimplexCategory.Truncated n)ᵒᵖ) (a✝ : ((SimplexCategory.Truncated.inclusion n).op.comp X).obj X✝) :
    (rightExtensionInclusion X n).hom.app X✝ a✝ = a✝
    @[reducible, inline]

    A morphism in SimplexCategory with domain [0], [1], or [2] defines an object in the comma category StructuredArrow (op [n]) (Truncated.inclusion (n := 2)).op.

    Equations
    Instances For

      Given a term in the cone over the diagram (proj (op [n]) ((Truncated.inclusion 2).op ⋙ (Truncated.inclusion 2).op ⋙ X) where X is Strict Segal, one can produce an n-simplex in X.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂ (X : SSet) [X.StrictSegal] {n : } (s : CategoryTheory.Limits.Cone ((CategoryTheory.StructuredArrow.proj (Opposite.op (SimplexCategory.mk n)) (SimplexCategory.Truncated.inclusion 2).op).comp ((SimplexCategory.Truncated.inclusion 2).op.comp X))) (x : s.pt) (i j : ) (hij : i j) (hj : j n) :
        X.map (SimplexCategory.mkOfLe i, j, hij).op (lift s x) = s.app (strArrowMk₂ (SimplexCategory.mkOfLe i, j, hij) ) x
        noncomputable def SSet.StrictSegal.isPointwiseRightKanExtensionAt (X : SSet) [X.StrictSegal] (n : ) :
        (Truncated.rightExtensionInclusion X 2).IsPointwiseRightKanExtensionAt (Opposite.op (SimplexCategory.mk n))

        A strict Segal simplicial set is 2-coskeletal.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable def SSet.StrictSegal.isPointwiseRightKanExtension (X : SSet) [X.StrictSegal] :
          (Truncated.rightExtensionInclusion X 2).IsPointwiseRightKanExtension

          Since StrictSegal.isPointwiseRightKanExtensionAt proves that the appropriate cones are limit cones, rightExtensionInclusion X 2 is a pointwise right Kan extension.

          Equations
          Instances For

            When X is StrictSegal, X is 2-coskeletal.

            The essential data of the nerve functor is contained in the 2-truncation, which is recorded by the composite functor nerveFunctor₂.

            Equations
            Instances For

              The natural isomorphism between nerveFunctor and nerveFunctor₂ ⋙ Truncated.cosk 2 whose components nerve C ≅ (Truncated.cosk 2).obj (nerveFunctor₂.obj C) shows that nerves of categories are 2-coskeletal.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For