Finite simplicial sets #
A simplicial set is finite (SSet.Finite) if it has finitely
many nondegenerate simplices.
instance
SSet.instFiniteElemObjOppositeSimplexCategoryOpMkNonDegenerateOfFinite
(X : SSet)
[X.Finite]
(n : ℕ)
:
Finite ↑(X.nonDegenerate n)
theorem
SSet.finite_of_hasDimensionLT
(X : SSet)
(d : ℕ)
[X.HasDimensionLT d]
(h : ∀ i < d, Finite ↑(X.nonDegenerate i))
:
X.Finite
instance
SSet.instFiniteObjOppositeSimplexCategoryOfFinite
(X : SSet)
[X.Finite]
(n : SimplexCategoryᵒᵖ)
:
theorem
SSet.finite_of_mono
{X Y : SSet}
[Y.Finite]
(f : X ⟶ Y)
[hf : CategoryTheory.Mono f]
:
X.Finite
theorem
SSet.finite_of_epi
{X Y : SSet}
[X.Finite]
(f : X ⟶ Y)
[hf : CategoryTheory.Epi f]
:
Y.Finite