The nondegenerate simplices in the nerve of partially ordered type #
In this file, we show that if X
is a partially ordered type,
then a n
-simplex s
of the nerve is nondegenerate iff
the monotone map s.obj : Fin (n + 1) → X
is strictly monotone.
theorem
PartialOrder.mem_range_nerve_σ_iff
{X : Type u_1}
[PartialOrder X]
{n : ℕ}
(s : (CategoryTheory.nerve X).obj (Opposite.op (SimplexCategory.mk (n + 1))))
(i : Fin (n + 1))
:
s ∈ Set.range (CategoryTheory.SimplicialObject.σ (CategoryTheory.nerve X) i) ↔ s.obj i.castSucc = s.obj i.succ
theorem
PartialOrder.mem_nerve_degenerate_of_eq
{X : Type u_1}
[PartialOrder X]
{n : ℕ}
(s : (CategoryTheory.nerve X).obj (Opposite.op (SimplexCategory.mk (n + 1))))
{i : Fin (n + 1)}
(hi : s.obj i.castSucc = s.obj i.succ)
:
theorem
PartialOrder.mem_nerve_nonDegenerate_iff_strictMono
{X : Type u_1}
[PartialOrder X]
{n : ℕ}
(s : (CategoryTheory.nerve X).obj (Opposite.op (SimplexCategory.mk n)))
:
theorem
PartialOrder.mem_nerve_nonDegenerate_iff_injective
{X : Type u_1}
[PartialOrder X]
{n : ℕ}
(s : (CategoryTheory.nerve X).obj (Opposite.op (SimplexCategory.mk n)))
: