The covariant involution of the category of simplicial sets #
In this file, we define the covariant involution opFunctor : SSet ⥤ SSet
of the category of simplicial sets that is induced by the
covariant involution SimplexCategory.op : SimplexCategory ⥤ SimplexCategory
.
We use an abbreviation X.op
for opFunctor.obj X
.
TODO #
- Show that this involution sends
Δ[n]
to itself, and that via this identification, the hornhorn n i
is sent tohorn n i.rev
(@joelriou) - Construct an isomorphism
nerve Cᵒᵖ ≅ (nerve C).op
(@robin-carlier) - Show that the topological realization of
X.op
identifies to the topological realization ofX
(@joelriou)
The covariant involution of the category of simplicial sets that
is induced by SimplexCategory.rev : SimplexCategory ⥤ SimplexCategory
.
Equations
Instances For
The type of n
-simplices of X.op
identify to type of n
-simplices of X
.
Equations
- SSet.opObjEquiv = Equiv.refl (X.op.obj n)
Instances For
@[simp]
theorem
SSet.op_δ
(X : SSet)
{n : ℕ}
(i : Fin (n + 2))
(x : X.obj (Opposite.op (SimplexCategory.mk (n + 1))))
:
@[simp]
theorem
SSet.op_σ
(X : SSet)
{n : ℕ}
(i : Fin (n + 1))
(x : X.obj (Opposite.op (SimplexCategory.mk n)))
:
@[simp]
theorem
SSet.opFunctorCompOpFunctorIso_hom_app_app
(X : SSet)
(X✝ : SimplexCategoryᵒᵖ)
(a✝ : ((opFunctor.comp opFunctor).obj X).obj X✝)
:
@[simp]
theorem
SSet.opFunctorCompOpFunctorIso_inv_app_app
(X : SSet)
(X✝ : SimplexCategoryᵒᵖ)
(a✝ : ((CategoryTheory.Functor.id SSet).obj X).obj X✝)
:
@[simp]
@[simp]