Documentation

Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.Rpow.Order

Order properties of CFC.rpow #

This file shows that a ↦ a ^ p is monotone for p ∈ [0, 1], where a is an element of a C⋆-algebra. The proof makes use of the integral representation of rpow in Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.Rpow.IntegralRepresentation.

Main declarations #

TODO #

References #

theorem CFC.monotone_nnrpow {A : Type u_1} [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {p : NNReal} (hp : p Set.Icc 0 1) :
Monotone fun (a : A) => a ^ p

a ↦ a ^ p is operator monotone for p ∈ [0,1].

theorem CFC.nnrpow_le_nnrpow {A : Type u_1} [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {p : NNReal} (hp : p Set.Icc 0 1) {a b : A} (hab : a b) :
a ^ p b ^ p
theorem CFC.sqrt_le_sqrt {A : Type u_1} [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] (a b : A) (hab : a b) :
theorem CFC.monotone_rpow {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {p : } (hp : p Set.Icc 0 1) :
Monotone fun (a : A) => a ^ p

a ↦ a ^ p is operator monotone for p ∈ [0,1].

theorem CFC.rpow_le_rpow {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {p : } (hp : p Set.Icc 0 1) {a b : A} (hab : a b) :
a ^ p b ^ p