Order properties of CFC.rpow #
This file shows that a ↦ a ^ p is monotone for p ∈ [0, 1], where a is an element of a
C⋆-algebra. The proof makes use of the integral representation of rpow in
Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.Rpow.IntegralRepresentation.
Main declarations #
CFC.monotone_nnrpow,CFC.monotone_rpow:a ↦ a ^ pis operator monotone forp ∈ [0,1]CFC.monotone_sqrt:CFC.sqrtis operator monotone
TODO #
- Show operator concavity of
rpowoverIcc 0 1 - Show that
rpowoverIcc (-1) 0is operator antitone and operator convex - Show operator convexity of
rpowoverIcc 1 2
References #
- [Car10] Eric A. Carlen, "Trace inequalities and quantum entropies: An introductory course" (see Lemma 2.8)
theorem
CFC.monotone_nnrpow
{A : Type u_1}
[NonUnitalCStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
{p : NNReal}
(hp : p ∈ Set.Icc 0 1)
:
a ↦ a ^ p is operator monotone for p ∈ [0,1].
theorem
CFC.monotone_sqrt
{A : Type u_1}
[NonUnitalCStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
:
CFC.sqrt is operator monotone.
theorem
CFC.nnrpow_le_nnrpow
{A : Type u_1}
[NonUnitalCStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
{p : NNReal}
(hp : p ∈ Set.Icc 0 1)
{a b : A}
(hab : a ≤ b)
:
theorem
CFC.sqrt_le_sqrt
{A : Type u_1}
[NonUnitalCStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
(a b : A)
(hab : a ≤ b)
:
theorem
CFC.monotone_rpow
{A : Type u_1}
[CStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
{p : ℝ}
(hp : p ∈ Set.Icc 0 1)
:
a ↦ a ^ p is operator monotone for p ∈ [0,1].
theorem
CFC.rpow_le_rpow
{A : Type u_1}
[CStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
{p : ℝ}
(hp : p ∈ Set.Icc 0 1)
{a b : A}
(hab : a ≤ b)
: