Real logarithm base b
#
In this file we define Real.logb
to be the logarithm of a real number in a given base b
. We
define this as the division of the natural logarithms of the argument and the base, so that we have
a globally defined function with logb b 0 = 0
, logb b (-x) = logb b x
logb 0 x = 0
and
logb (-b) x = logb b x
.
We prove some basic properties of this function and its relation to rpow
.
Tags #
logarithm, continuity
theorem
Real.surjOn_logb
{b : ℝ}
(b_pos : 0 < b)
(b_ne_one : b ≠ 1)
:
Set.SurjOn (Real.logb b) (Set.Ioi 0) Set.univ
theorem
Real.surjOn_logb'
{b : ℝ}
(b_pos : 0 < b)
(b_ne_one : b ≠ 1)
:
Set.SurjOn (Real.logb b) (Set.Iio 0) Set.univ
theorem
Real.tendsto_logb_atTop
{b : ℝ}
(hb : 1 < b)
:
Filter.Tendsto (Real.logb b) Filter.atTop Filter.atTop
theorem
Real.strictAntiOn_logb_of_base_lt_one
{b : ℝ}
(b_pos : 0 < b)
(b_lt_one : b < 1)
:
StrictAntiOn (Real.logb b) (Set.Ioi 0)
theorem
Real.strictMonoOn_logb_of_base_lt_one
{b : ℝ}
(b_pos : 0 < b)
(b_lt_one : b < 1)
:
StrictMonoOn (Real.logb b) (Set.Iio 0)
theorem
Real.tendsto_logb_atTop_of_base_lt_one
{b : ℝ}
(b_pos : 0 < b)
(b_lt_one : b < 1)
:
Filter.Tendsto (Real.logb b) Filter.atTop Filter.atBot
theorem
Real.tendsto_logb_nhdsWithin_zero
{b : ℝ}
(hb : 1 < b)
:
Filter.Tendsto (Real.logb b) (nhdsWithin 0 {0}ᶜ) Filter.atBot
theorem
Real.tendsto_logb_nhdsWithin_zero_of_base_lt_one
{b : ℝ}
(hb₀ : 0 < b)
(hb : b < 1)
:
Filter.Tendsto (Real.logb b) (nhdsWithin 0 {0}ᶜ) Filter.atTop
theorem
Real.tendsto_logb_nhdsWithin_zero_right
{b : ℝ}
(hb : 1 < b)
:
Filter.Tendsto (Real.logb b) (nhdsWithin 0 (Set.Ioi 0)) Filter.atBot
theorem
Real.tendsto_logb_nhdsWithin_zero_right_of_base_lt_one
{b : ℝ}
(hb₀ : 0 < b)
(hb : b < 1)
:
Filter.Tendsto (Real.logb b) (nhdsWithin 0 (Set.Ioi 0)) Filter.atTop
The real logarithm base b is continuous as a function from nonzero reals.
The real logarithm base b is continuous as a function from positive reals.
@[simp]
theorem
Real.continuousAt_logb_iff
{b x : ℝ}
(hb₀ : 0 < b)
(hb : b ≠ 1)
:
ContinuousAt (Real.logb b) x ↔ x ≠ 0
theorem
Real.induction_Ico_mul
{P : ℝ → Prop}
(x₀ r : ℝ)
(hr : 1 < r)
(hx₀ : 0 < x₀)
(base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x)
(step : ∀ n ≥ 1, (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z)
(x : ℝ)
:
x ≥ x₀ → P x
Induction principle for intervals of real numbers: if a proposition P
is true
on [x₀, r * x₀)
and if P
for [x₀, r^n * x₀)
implies P
for [r^n * x₀, r^(n+1) * x₀)
,
then P
is true for all x ≥ x₀
.