Locally presentable categories and strong generators #
In this file, we show that a category is locally κ-presentable iff
it is cocomplete and has a strong generator consisting of κ-presentable objects.
This is theorem 1.20 in the book by Adámek and Rosický.
In particular, if a category is locally κ-presentable, it is also
locally κ'-presentable for any regular cardinal κ' such that κ ≤ κ'.
References #
theorem
CategoryTheory.IsCardinalFilteredGenerator.of_isDense
{C : Type u}
[Category.{v, u} C]
[LocallySmall.{w, v, u} C]
{J : Type u'}
[Category.{v', u'} J]
[EssentiallySmall.{w, v', u'} J]
(F : Functor J C)
[F.IsDense]
(κ : Cardinal.{w})
[Fact κ.IsRegular]
[∀ (j : J), IsCardinalPresentable (F.obj j) κ]
[∀ (X : C), IsCardinalFiltered (CostructuredArrow F X) κ]
:
(⊤.map F).IsCardinalFilteredGenerator κ
theorem
CategoryTheory.IsCardinalFilteredGenerator.of_isDense_ι
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
[ObjectProperty.EssentiallySmall.{w, v, u} P]
(κ : Cardinal.{w})
[Fact κ.IsRegular]
[P.ι.IsDense]
[LocallySmall.{w, v, u} C]
(hP : P ≤ isCardinalPresentable C κ)
[∀ (X : C), IsCardinalFiltered (CostructuredArrow P.ι X) κ]
:
instance
CategoryTheory.ObjectProperty.isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
(κ : Cardinal.{w})
[Fact κ.IsRegular]
[Limits.HasColimitsOfSize.{w, w, v, u} C]
(X : C)
:
IsCardinalFiltered (CostructuredArrow (P.colimitsCardinalClosure κ).ι X) κ
instance
CategoryTheory.ObjectProperty.isFiltered_costructuredArrow_colimitsCardinalClosure_ι
{C : Type u}
[Category.{v, u} C]
(P : ObjectProperty C)
(κ : Cardinal.{w})
[Fact κ.IsRegular]
[Limits.HasColimitsOfSize.{w, w, v, u} C]
(X : C)
:
IsFiltered (CostructuredArrow (P.colimitsCardinalClosure κ).ι X)
theorem
CategoryTheory.ObjectProperty.IsStrongGenerator.isDense_colimitsCardinalClosure_ι
{C : Type u}
[Category.{v, u} C]
{κ : Cardinal.{w}}
[Fact κ.IsRegular]
[Limits.HasColimitsOfSize.{w, w, v, u} C]
[LocallySmall.{w, v, u} C]
{P : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} P]
(hS₁ : P.IsStrongGenerator)
(hS₂ : P ≤ isCardinalPresentable C κ)
:
(P.colimitsCardinalClosure κ).ι.IsDense
theorem
CategoryTheory.ObjectProperty.colimitsCardinalClosure_le_isCardinalPresentable
{C : Type u}
[Category.{v, u} C]
{κ : Cardinal.{w}}
[Fact κ.IsRegular]
[LocallySmall.{w, v, u} C]
(P : ObjectProperty C)
(hP : P ≤ isCardinalPresentable C κ)
:
theorem
CategoryTheory.IsStrongGenerator.colimitsCardinalClosure_eq_isCardinalPresentable
{C : Type u}
[Category.{v, u} C]
{κ : Cardinal.{w}}
[Fact κ.IsRegular]
[Limits.HasColimitsOfSize.{w, w, v, u} C]
[LocallySmall.{w, v, u} C]
{P : ObjectProperty C}
[ObjectProperty.Small.{w, v, u} P]
(hS₁ : P.IsStrongGenerator)
(hS₂ : P ≤ isCardinalPresentable C κ)
:
theorem
CategoryTheory.IsCardinalLocallyPresentable.iff_exists_isStrongGenerator
(C : Type u)
[Category.{v, u} C]
(κ : Cardinal.{w})
[Fact κ.IsRegular]
[Limits.HasColimitsOfSize.{w, w, v, u} C]
[LocallySmall.{w, v, u} C]
:
IsCardinalLocallyPresentable C κ ↔ ∃ (P : ObjectProperty C) (_ : ObjectProperty.Small.{w, v, u} P), P.IsStrongGenerator ∧ P ≤ isCardinalPresentable C κ
theorem
CategoryTheory.IsCardinalLocallyPresentable.of_le
(C : Type u)
[Category.{v, u} C]
{κ : Cardinal.{w}}
[Fact κ.IsRegular]
[IsCardinalLocallyPresentable C κ]
{κ' : Cardinal.{w}}
[Fact κ'.IsRegular]
(h : κ ≤ κ')
: