Documentation

Mathlib.CategoryTheory.Sites.Coherent.SheafComparison

Categories of coherent sheaves #

Given a fully faithful functor F : C ⥤ D into a precoherent category, which preserves and reflects finite effective epi families, and satisfies the property F.EffectivelyEnough (meaning that to every object in C there is an effective epi from an object in the image of F), the categories of coherent sheaves on C and D are equivalent (see CategoryTheory.coherentTopology.equivalence).

The main application of this equivalence is the characterisation of condensed sets as coherent sheaves on either CompHaus, Profinite or Stonean. See the file Condensed/Equivalence.lean

We give the corresponding result for the regular topology as well (see CategoryTheory.regularTopology.equivalence).

instance CategoryTheory.coherentTopology.instIsCoverDense {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.EffectivelyEnough] [Precoherent D] :
F.IsCoverDense (coherentTopology D)
theorem CategoryTheory.coherentTopology.exists_effectiveEpiFamily_iff_mem_induced {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [Precoherent D] (X : C) (S : Sieve X) :
(∃ (α : Type) (_ : Finite α) (Y : αC) (π : (a : α) → Y a X), EffectiveEpiFamily Y π ∀ (a : α), S.arrows (π a)) S (F.inducedTopology (coherentTopology D)) X
theorem CategoryTheory.coherentTopology.eq_induced {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [Precoherent D] :
coherentTopology C = F.inducedTopology (coherentTopology D)
instance CategoryTheory.coherentTopology.instIsDenseSubsite {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [Precoherent D] :
theorem CategoryTheory.coherentTopology.coverPreserving {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [Precoherent D] :
noncomputable def CategoryTheory.coherentTopology.equivalence {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (F : Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [Precoherent D] [F.EffectivelyEnough] (A : Type u₃) [Category.{v₃, u₃} A] [∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X F.op) A] :

The equivalence from coherent sheaves on C to coherent sheaves on D, given a fully faithful functor F : C ⥤ D to a precoherent category, which preserves and reflects effective epimorphic families, and satisfies F.EffectivelyEnough.

Equations
Instances For
    noncomputable def CategoryTheory.coherentTopology.equivalence' {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (F : Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [FinitaryExtensive D] [Preregular D] [FinitaryPreExtensive C] [Limits.PreservesFiniteCoproducts F] [F.EffectivelyEnough] (A : Type u₃) [Category.{v₃, u₃} A] [∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X F.op) A] :

    The equivalence from coherent sheaves on C to coherent sheaves on D, given a fully faithful functor F : C ⥤ D to an extensive preregular category, which preserves and reflects effective epimorphisms and satisfies F.EffectivelyEnough.

    Equations
    Instances For
      instance CategoryTheory.regularTopology.instIsCoverDense {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.EffectivelyEnough] [Preregular D] :
      F.IsCoverDense (regularTopology D)
      theorem CategoryTheory.regularTopology.exists_effectiveEpi_iff_mem_induced {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [F.EffectivelyEnough] [Preregular D] (X : C) (S : Sieve X) :
      (∃ (Y : C) (π : Y X), EffectiveEpi π S.arrows π) S (F.inducedTopology (regularTopology D)) X
      theorem CategoryTheory.regularTopology.eq_induced {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [F.EffectivelyEnough] [Preregular D] :
      regularTopology C = F.inducedTopology (regularTopology D)
      instance CategoryTheory.regularTopology.instIsDenseSubsite {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [F.EffectivelyEnough] [Preregular D] :
      theorem CategoryTheory.regularTopology.coverPreserving {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (F : Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [F.EffectivelyEnough] [Preregular D] :
      noncomputable def CategoryTheory.regularTopology.equivalence {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] (F : Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [Preregular D] [F.EffectivelyEnough] (A : Type u₃) [Category.{v₃, u₃} A] [∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X F.op) A] :

      The equivalence from regular sheaves on C to regular sheaves on D, given a fully faithful functor F : C ⥤ D to a preregular category, which preserves and reflects effective epimorphisms and satisfies F.EffectivelyEnough.

      Equations
      Instances For

        The categories of coherent sheaves and extensive sheaves on C are equivalent if C is preregular, finitary extensive, and every object is projective.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Presheaf.coherentExtensiveEquivalence_counitIso {C : Type u_1} [Category.{u_3, u_1} C] {A : Type u₃} [Category.{v₃, u₃} A] [Preregular C] [FinitaryExtensive C] [∀ (X : C), Projective X] :
          coherentExtensiveEquivalence.counitIso = Iso.refl ({ obj := fun (F : Sheaf (extensiveTopology C) A) => { val := F.val, cond := }, map := fun {X Y : Sheaf (extensiveTopology C) A} (f : X Y) => { val := f.val }, map_id := , map_comp := }.comp { obj := fun (F : Sheaf (coherentTopology C) A) => { val := F.val, cond := }, map := fun {X Y : Sheaf (coherentTopology C) A} (f : X Y) => { val := f.val }, map_id := , map_comp := })
          @[simp]
          @[simp]