Documentation

Mathlib.CategoryTheory.Sites.Coherent.SheafComparison

Categories of coherent sheaves #

Given a fully faithful functor F : C ⥤ D into a precoherent category, which preserves and reflects finite effective epi families, and satisfies the property F.EffectivelyEnough (meaning that to every object in C there is an effective epi from an object in the image of F), the categories of coherent sheaves on C and D are equivalent (see CategoryTheory.coherentTopology.equivalence).

The main application of this equivalence is the characterisation of condensed sets as coherent sheaves on either CompHaus, Profinite or Stonean. See the file Condensed/Equivalence.lean

We give the corresonding result for the regular topology as well (see CategoryTheory.regularTopology.equivalence).

theorem CategoryTheory.coherentTopology.exists_effectiveEpiFamily_iff_mem_induced {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [CategoryTheory.Precoherent D] (X : C) (S : CategoryTheory.Sieve X) :
(∃ (α : Type) (_ : Finite α) (Y : αC) (π : (a : α) → Y a X), CategoryTheory.EffectiveEpiFamily Y π ∀ (a : α), S.arrows (π a)) S (F.inducedTopologyOfIsCoverDense (CategoryTheory.coherentTopology D)).sieves X
theorem CategoryTheory.coherentTopology.eq_induced {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [CategoryTheory.Precoherent D] :
theorem CategoryTheory.coherentTopology.coverPreserving {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [CategoryTheory.Precoherent D] :
instance CategoryTheory.coherentTopology.coverLifting {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [CategoryTheory.Precoherent D] :
Equations
  • =
instance CategoryTheory.coherentTopology.isContinuous {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [F.EffectivelyEnough] [CategoryTheory.Precoherent D] :
Equations
  • =
noncomputable def CategoryTheory.coherentTopology.equivalence {C : Type (u + 1)} {D : Type (u + 1)} [CategoryTheory.LargeCategory C] [CategoryTheory.LargeCategory D] (F : CategoryTheory.Functor C D) [F.PreservesFiniteEffectiveEpiFamilies] [F.ReflectsFiniteEffectiveEpiFamilies] [F.Full] [F.Faithful] [CategoryTheory.Precoherent D] [F.EffectivelyEnough] (A : Type u_3) [CategoryTheory.Category.{u + 1, u_3} A] [CategoryTheory.Limits.HasLimits A] :

The equivalence from coherent sheaves on C to coherent sheaves on D, given a fully faithful functor F : C ⥤ D to a precoherent category, which preserves and reflects effective epimorphic families, and satisfies F.EffectivelyEnough.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The equivalence from coherent sheaves on C to coherent sheaves on D, given a fully faithful functor F : C ⥤ D to an extensive preregular category, which preserves and reflects effective epimorphisms and satisfies F.EffectivelyEnough.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.regularTopology.exists_effectiveEpi_iff_mem_induced {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [F.EffectivelyEnough] [CategoryTheory.Preregular D] (X : C) (S : CategoryTheory.Sieve X) :
      (∃ (Y : C) (π : Y X), CategoryTheory.EffectiveEpi π S.arrows π) S (F.inducedTopologyOfIsCoverDense (CategoryTheory.regularTopology D)).sieves X
      theorem CategoryTheory.regularTopology.eq_induced {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [F.EffectivelyEnough] [CategoryTheory.Preregular D] :
      instance CategoryTheory.regularTopology.coverLifting {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [F.EffectivelyEnough] [CategoryTheory.Preregular D] :
      Equations
      • =
      instance CategoryTheory.regularTopology.isContinuous {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] (F : CategoryTheory.Functor C D) [F.PreservesEffectiveEpis] [F.ReflectsEffectiveEpis] [F.Full] [F.Faithful] [F.EffectivelyEnough] [CategoryTheory.Preregular D] :
      Equations
      • =

      The equivalence from regular sheaves on C to regular sheaves on D, given a fully faithful functor F : C ⥤ D to a preregular category, which preserves and reflects effective epimorphisms and satisfies F.EffectivelyEnough.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For