Documentation

Mathlib.CategoryTheory.Sites.Coherent.RegularSheaves

Sheaves for the regular topology #

This file characterises sheaves for the regular topology.

Main results #

A presieve is regular if it consists of a single effective epimorphism.

Instances
    theorem CategoryTheory.regularTopology.equalizerCondition_w {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (P : Functor Cᵒᵖ D) {X B : C} {π : X B} (c : Limits.PullbackCone π π) :
    CategoryStruct.comp (P.map π.op) (P.map c.fst.op) = CategoryStruct.comp (P.map π.op) (P.map c.snd.op)

    A contravariant functor on C satisfies SingleEqualizerCondition with respect to a morphism π if it takes its kernel pair to an equalizer diagram.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A contravariant functor on C satisfies EqualizerCondition if it takes kernel pairs of effective epimorphisms to equalizer diagrams.

      Equations
      Instances For

        The equalizer condition is preserved by natural isomorphism.

        theorem CategoryTheory.regularTopology.equalizerCondition_precomp_of_preservesPullback {C : Type u_1} {D : Type u_2} {E : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} E] (P : Functor Cᵒᵖ D) (F : Functor E C) [∀ {X B : E} (π : X B) [inst : EffectiveEpi π], Limits.PreservesLimit (Limits.cospan π π) F] [F.PreservesEffectiveEpis] (hP : EqualizerCondition P) :
        EqualizerCondition (F.op.comp P)

        Precomposing with a pullback-preserving functor preserves the equalizer condition.

        def CategoryTheory.regularTopology.MapToEqualizer {C : Type u_1} [Category.{u_5, u_1} C] (P : Functor Cᵒᵖ (Type u_4)) {W X B : C} (f : X B) (g₁ g₂ : W X) (w : CategoryStruct.comp g₁ f = CategoryStruct.comp g₂ f) :
        P.obj (Opposite.op B){x : P.obj (Opposite.op X) | P.map g₁.op x = P.map g₂.op x}

        The canonical map to the explicit equalizer.

        Equations
        Instances For
          theorem CategoryTheory.regularTopology.equalizerCondition_w' {C : Type u_1} [Category.{u_5, u_1} C] (P : Functor Cᵒᵖ (Type u_4)) {X B : C} (π : X B) [Limits.HasPullback π π] :
          CategoryStruct.comp (P.map π.op) (P.map (Limits.pullback.fst π π).op) = CategoryStruct.comp (P.map π.op) (P.map (Limits.pullback.snd π π).op)

          An alternative phrasing of the explicit equalizer condition, using more categorical language.

          P satisfies the equalizer condition iff its precomposition by an equivalence does.

          theorem CategoryTheory.regularTopology.parallelPair_pullback_initial {C : Type u_1} [Category.{u_4, u_1} C] {X B : C} (π : X B) (c : Limits.PullbackCone π π) (hc : Limits.IsLimit c) :
          (Limits.parallelPair (Over.homMk c.fst ).op (Over.homMk c.snd ).op).Initial
          noncomputable def CategoryTheory.regularTopology.isLimit_forkOfι_equiv {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (P : Functor Cᵒᵖ D) {X B : C} (π : X B) (c : Limits.PullbackCone π π) (hc : Limits.IsLimit c) :
          Limits.IsLimit (Limits.Fork.ofι (P.map π.op) ) Limits.IsLimit (P.mapCone (Sieve.ofArrows (fun (x : Unit) => X) fun (x : Unit) => π).arrows.cocone.op)

          Given a limiting pullback cone, the fork in SingleEqualizerCondition is limiting iff the diagram in Presheaf.isSheaf_iff_isLimit_coverage is limiting.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (P : Functor Cᵒᵖ D) ⦃X B : C (π : X B) [Limits.HasPullback π π] :
            SingleEqualizerCondition P π Nonempty (Limits.IsLimit (P.mapCone (Sieve.ofArrows (fun (x : Unit) => X) fun (x : Unit) => π).arrows.cocone.op))

            Every presheaf is a sheaf for the regular topology if every object of C is projective.

            Every Yoneda-presheaf is a sheaf for the regular topology.

            The regular topology on any preregular category is subcanonical.