Documentation

Mathlib.CategoryTheory.Sites.SheafCohomology.MayerVietoris

The Mayer-Vietoris exact sequence in sheaf cohomology #

Let C be a category equipped with a Grothendieck topology J. Let S : J.MayerVietorisSquare be a Mayer-Vietoris square for J. Let F be an abelian sheaf on (C, J).

In this file, we obtain a long exact Mayer-Vietoris sequence:

... ⟶ H^n(S.X₄, F) ⟶ H^n(S.X₂, F) ⊞ H^n(S.X₃, F) ⟶ H^n(S.X₁, F) ⟶ H^{n + 1}(S.X₄, F) ⟶ ...

The difference of two restriction maps in sheaf cohomology.

Equations
Instances For

    The connecting homomorphism of the Mayer-Vietoris long exact sequence in sheaf cohomology.

    Equations
    Instances For
      @[reducible, inline]

      The Mayer-Vietoris long exact sequence of an abelian sheaf F : Sheaf J AddCommGrpCat for a Mayer-Vietoris square S : J.MayerVietorisSquare.

      Equations
      Instances For

        Comparison isomorphism from the Mayer-Vietoris sequence and the contravariant sequence of Ext-groups.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For