The Mayer-Vietoris exact sequence in sheaf cohomology #
Let C be a category equipped with a Grothendieck topology J.
Let S : J.MayerVietorisSquare be a Mayer-Vietoris square for J.
Let F be an abelian sheaf on (C, J).
In this file, we obtain a long exact Mayer-Vietoris sequence:
... ⟶ H^n(S.X₄, F) ⟶ H^n(S.X₂, F) ⊞ H^n(S.X₃, F) ⟶ H^n(S.X₁, F) ⟶ H^{n + 1}(S.X₄, F) ⟶ ...
The sum of two restriction maps in sheaf cohomology.
Equations
- S.toBiprod F n = CategoryTheory.Limits.biprod.lift ((F.cohomologyPresheaf n).map S.f₂₄.op) ((F.cohomologyPresheaf n).map S.f₃₄.op)
Instances For
The difference of two restriction maps in sheaf cohomology.
Equations
- S.fromBiprod F n = CategoryTheory.Limits.biprod.desc ((F.cohomologyPresheaf n).map S.f₁₂.op) (-(F.cohomologyPresheaf n).map S.f₁₃.op)
Instances For
The connecting homomorphism of the Mayer-Vietoris long exact sequence in sheaf cohomology.
Equations
- S.δ F n₀ n₁ h = AddCommGrpCat.ofHom (⋯.extClass.precomp F ⋯)
Instances For
The Mayer-Vietoris long exact sequence of an abelian sheaf F : Sheaf J AddCommGrpCat
for a Mayer-Vietoris square S : J.MayerVietorisSquare.
Equations
- S.sequence F n₀ n₁ h = CategoryTheory.ComposableArrows.mk₅ (S.toBiprod F n₀) (S.fromBiprod F n₀) (S.δ F n₀ n₁ h) (S.toBiprod F n₁) (S.fromBiprod F n₁)
Instances For
Comparison isomorphism from the Mayer-Vietoris sequence and the
contravariant sequence of Ext-groups.
Equations
- One or more equations did not get rendered due to their size.