Combinations #
Combinations in a type are finite subsets of given cardinality. This file provides some API for handling them, especially in the context of a group action.
Nat.Combination α nis the set of allFinset αwith cardinalityn.Nat.Combination.cardproves that theNat.card-cardinality of this set is equal to(Nat.card α).choose n.Nat.Combination.subMulAction: When a groupGacts onα, theSubMulActionofGonn.Combination α.
This induces a MulAction G (n.Combination α) instance. Then:
EmbeddingToCombination.map: the equivariant map fromFin n ↪ αton.Combination α.Nat.Combination.isPretransitive_of_IsMultiplyPretransitiveshows the pretransitivity of that action if the action ofGonαisn-pretransitive.Nat.Combination.isPretransitiveshows thatEquiv.Perm αacts pretransitively onn.Combination α, for alln.Nat.Combination.compl: Given an equalitym + n = Fintype.card α, the complement of ann-combination, as anm-combination. This map is an equivariant map with respect to a group action onα.Nat.toCombination_one_equivariant: The obvious map fromαto1.Combination α, as an equivariant map.
Nat.Combination α n as a SubMulAction of Finset α.
Equations
- Nat.Combination.subMulAction G α n = { carrier := Nat.Combination α n, smul_mem' := ⋯ }
Instances For
Nat.Combination α n as a SubAddAction of Finsetα.
Equations
- Nat.Combination.subAddAction G α n = { carrier := Nat.Combination α n, vadd_mem' := ⋯ }
Instances For
If an additive group G acts faithfully on α,
then it acts faithfully on n.Combination α,
provided 1 ≤ n < ENat.card α.
If a group G acts faithfully on α,
then it acts faithfull on n.Combination α,
provided 1 ≤ n < ENat.card α.
The equivariant map from embeddings of Fin n (aka arrangement) to combinations.
Equations
- Nat.Combination.mulActionHom_of_embedding G α n = { toFun := fun (f : Fin n ↪ α) => ⟨Finset.map f Finset.univ, ⋯⟩, map_smul' := ⋯ }
Instances For
The equivariant map from embeddings of Fin n
(aka arrangements) to combinations.
Equations
- Nat.Combination.addActionHom_of_embedding G α n = { toFun := fun (f : Fin n ↪ α) => ⟨Finset.map f Finset.univ, ⋯⟩, map_vadd' := ⋯ }
Instances For
If 0 < n < ENat.card α, then n.Combination α is nontrivial.
A variant of Nat.Combination.nontrivial that uses Nat.card.
The complement of a combination, as an equivariant map.
Equations
- Nat.Combination.compl G α hm = { toFun := fun (s : ↑(Nat.Combination α n)) => ⟨(↑s)ᶜ, ⋯⟩, map_smul' := ⋯ }
Instances For
The obvious map from a type to its 1-combinations, as an equivariant map.
Equations
Instances For
The obvious map from a type to its 1-combinations, as an equivariant map.