Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction.Combination

Combinations #

Combinations in a type are finite subsets of given cardinality. This file provides some API for handling them, especially in the context of a group action.

This induces a MulAction G (n.Combination α) instance. Then:

def Nat.Combination (α : Type u_2) (n : ) :
Set (Finset α)

The type of combinations of n elements of a type α

Equations
Instances For
    @[simp]
    theorem Nat.Combination.mem_iff {α : Type u_2} {n : } {s : Finset α} :
    s Combination α n s.card = n
    @[simp]
    theorem Nat.Combination.coe_coe {α : Type u_2} {n : } {s : (Combination α n)} :
    s = s
    theorem Nat.Combination.mem_coe_iff {α : Type u_2} {n : } {s : (Combination α n)} {a : α} :
    a s a s
    theorem Nat.Combination.eq_iff_subset {α : Type u_2} {n : } {s t : (Combination α n)} :
    s = t s t
    theorem Nat.Combination.exists_mem_notMem {α : Type u_2} {n : } (hn : 1 n) ( : n < ENat.card α) {a b : α} (hab : a b) :
    ∃ (s : (Combination α n)), a s bs
    def Nat.Combination.subMulAction (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] (n : ) [DecidableEq α] :

    Nat.Combination α n as a SubMulAction of Finset α.

    Equations
    Instances For
      def Nat.Combination.subAddAction (G : Type u_1) [AddGroup G] (α : Type u_2) [AddAction G α] (n : ) [DecidableEq α] :

      Nat.Combination α n as a SubAddAction of Finsetα.

      Equations
      Instances For
        @[simp]
        theorem Nat.Combination.coe_smul {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] [DecidableEq α] {n : } {g : G} {s : (Combination α n)} :
        ↑(g s) = g s
        @[simp]
        theorem Nat.Combination.coe_vadd {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] [DecidableEq α] {n : } {g : G} {s : (Combination α n)} :
        ↑(g +ᵥ s) = g +ᵥ s
        theorem Nat.Combination.addAction_faithful {G : Type u_3} [AddGroup G] {α : Type u_4} [AddAction G α] {n : } [DecidableEq α] (hn : 1 n) ( : n < ENat.card α) {g : G} :
        theorem Nat.Combination.faithfulVAdd {G : Type u_3} [AddGroup G] {α : Type u_4} [AddAction G α] {n : } [DecidableEq α] (hn : 1 n) ( : n < ENat.card α) [FaithfulVAdd G α] :

        If an additive group G acts faithfully on α, then it acts faithfully on n.Combination α, provided 1 ≤ n < ENat.card α.

        theorem Nat.Combination.mulAction_faithful {G : Type u_3} [Group G] {α : Type u_4} [MulAction G α] {n : } [DecidableEq α] (hn : 1 n) ( : n < ENat.card α) {g : G} :
        theorem Nat.Combination.faithfulSMul {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {n : } [DecidableEq α] (hn : 1 n) ( : n < ENat.card α) [FaithfulSMul G α] :

        If a group G acts faithfully on α, then it acts faithfull on n.Combination α, provided 1 ≤ n < ENat.card α.

        def Nat.Combination.mulActionHom_of_embedding (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] (n : ) [DecidableEq α] :
        (Fin n α) →ₑ[id] (Combination α n)

        The equivariant map from embeddings of Fin n (aka arrangement) to combinations.

        Equations
        Instances For
          def Nat.Combination.addActionHom_of_embedding (G : Type u_1) [AddGroup G] (α : Type u_2) [AddAction G α] (n : ) [DecidableEq α] :
          (Fin n α) →ₑ[id] (Combination α n)

          The equivariant map from embeddings of Fin n (aka arrangements) to combinations.

          Equations
          Instances For
            theorem Nat.Combination.card (α : Type u_2) {n : } :
            theorem Nat.Combination.nontrivial {α : Type u_2} {n : } (h1 : 0 < n) (h2 : n < ENat.card α) :

            If 0 < n < ENat.card α, then n.Combination α is nontrivial.

            theorem Nat.Combination.nontrivial' {α : Type u_2} {n : } (h1 : 0 < n) (h2 : n < Nat.card α) :

            A variant of Nat.Combination.nontrivial that uses Nat.card.

            def Nat.Combination.compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } (hm : m + n = Fintype.card α) :
            (Combination α n) →ₑ[id] (Combination α m)

            The complement of a combination, as an equivariant map.

            Equations
            Instances For
              theorem Nat.Combination.coe_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (Combination α n)} :
              ((compl G α hm) s) = (↑s)
              theorem Nat.Combination.mem_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (Combination α n)} {a : α} :
              a (compl G α hm) s as
              theorem Nat.Combination.compl_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } (hm : m + n = Fintype.card α) :
              (compl G α ).comp (compl G α hm) = MulActionHom.id G
              theorem Nat.Combination.compl_bijective (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } (hm : m + n = Fintype.card α) :
              def Nat.Combination.mulActionHom_singleton (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] [DecidableEq α] :
              α →ₑ[id] (Combination α 1)

              The obvious map from a type to its 1-combinations, as an equivariant map.

              Equations
              Instances For

                The obvious map from a type to its 1-combinations, as an equivariant map.

                Equations
                Instances For