Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction.Combination

Combinations #

Combinations in a type are finite subsets of given cardinality. This file provides some API for handling them, especially in the context of a group action.

This induces a MulAction G (powersetCard α n) instance. Then:

def Set.powersetCard (α : Type u_2) (n : ) :
Set (Finset α)

The type of combinations of n elements of a type α.

See also Finset.powersetCard.

Equations
Instances For
    @[simp]
    theorem Set.powersetCard.mem_iff {α : Type u_2} {n : } {s : Finset α} :
    @[simp]
    theorem Set.powersetCard.coe_coe {α : Type u_2} {n : } {s : (powersetCard α n)} :
    s = s
    theorem Set.powersetCard.mem_coe_iff {α : Type u_2} {n : } {s : (powersetCard α n)} {a : α} :
    a s a s
    theorem Set.powersetCard.card_eq {α : Type u_2} {n : } (s : (powersetCard α n)) :
    (↑s).card = n
    theorem Set.powersetCard.ncard_eq {α : Type u_2} {n : } (s : (powersetCard α n)) :
    (↑s).ncard = n
    theorem Set.powersetCard.coe_nonempty_iff {α : Type u_2} {n : } {s : (powersetCard α n)} :
    (↑s).Nonempty 1 n
    theorem Set.powersetCard.coe_nontrivial_iff {α : Type u_2} {n : } {s : (powersetCard α n)} :
    (↑s).Nontrivial 1 < n
    theorem Set.powersetCard.eq_iff_subset {α : Type u_2} {n : } {s t : (powersetCard α n)} :
    s = t s t
    theorem Set.powersetCard.exists_mem_notMem {α : Type u_2} {n : } (hn : 1 n) ( : n < ENat.card α) {a b : α} (hab : a b) :
    ∃ (s : (powersetCard α n)), a s bs
    def Set.powersetCard.subMulAction (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] (n : ) [DecidableEq α] :

    Set.powersetCard α n as a SubMulAction of Finset α.

    Equations
    Instances For
      def Set.powersetCard.subAddAction (G : Type u_1) [AddGroup G] (α : Type u_2) [AddAction G α] (n : ) [DecidableEq α] :

      Set.powersetCard α n as a SubAddAction of Finsetα.

      Equations
      Instances For
        @[simp]
        theorem Set.powersetCard.coe_smul {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] [DecidableEq α] {n : } {g : G} {s : (powersetCard α n)} :
        ↑(g s) = g s
        @[simp]
        theorem Set.powersetCard.coe_vadd {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] [DecidableEq α] {n : } {g : G} {s : (powersetCard α n)} :
        ↑(g +ᵥ s) = g +ᵥ s
        theorem Set.powersetCard.stabilizer_coe {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] [DecidableEq α] {n : } (s : (powersetCard α n)) :
        theorem Set.powersetCard.addAction_faithful {α : Type u_2} [DecidableEq α] {G : Type u_3} [AddGroup G] [AddAction G α] {n : } (hn : 1 n) ( : n < ENat.card α) {g : G} :
        theorem Set.powersetCard.faithfulVAdd {α : Type u_2} [DecidableEq α] {G : Type u_3} [AddGroup G] [AddAction G α] {n : } (hn : 1 n) ( : n < ENat.card α) [FaithfulVAdd G α] :

        If an additive group G acts faithfully on α, then it acts faithfully on powersetCard α n, provided 1 ≤ n < ENat.card α.

        theorem Set.powersetCard.mulAction_faithful {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {n : } [DecidableEq α] (hn : 1 n) ( : n < ENat.card α) {g : G} :
        theorem Set.powersetCard.faithfulSMul {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {n : } [DecidableEq α] (hn : 1 n) ( : n < ENat.card α) [FaithfulSMul G α] :

        If a group G acts faithfully on α, then it acts faithfull on powersetCard α n provided 1 ≤ n < ENat.card α.

        def Set.powersetCard.mulActionHom_of_embedding (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] (n : ) [DecidableEq α] :
        (Fin n α) →ₑ[id] (powersetCard α n)

        The equivariant map from embeddings of Fin n (aka arrangement) to combinations.

        Equations
        Instances For
          def Set.powersetCard.addActionHom_of_embedding (G : Type u_1) [AddGroup G] (α : Type u_2) [AddAction G α] (n : ) [DecidableEq α] :
          (Fin n α) →ₑ[id] (powersetCard α n)

          The equivariant map from embeddings of Fin n (aka arrangements) to combinations.

          Equations
          Instances For
            theorem Set.powersetCard.card (α : Type u_2) (n : ) :
            theorem Set.powersetCard.nontrivial {α : Type u_2} {n : } (h1 : 0 < n) (h2 : n < ENat.card α) :

            If 0 < n < ENat.card α, then powersetCard α n is nontrivial.

            theorem Set.powersetCard.nontrivial' {α : Type u_2} {n : } (h1 : 0 < n) (h2 : n < Nat.card α) :

            A variant of Set.powersetCard.nontrivial that uses Nat.card.

            theorem Set.powersetCard.nontrivial_iff {α : Type u_2} {n : } [Finite α] :
            theorem Set.powersetCard.infinite (α : Type u_2) {n : } (h : 0 < n) [Infinite α] :
            def Set.powersetCard.compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } (hm : m + n = Fintype.card α) :

            The complement of a combination, as an equivariant map.

            Equations
            Instances For
              theorem Set.powersetCard.coe_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (powersetCard α n)} :
              ((compl G α hm) s) = (↑s)
              theorem Set.powersetCard.mem_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (powersetCard α n)} {a : α} :
              a (compl G α hm) s as
              theorem Set.powersetCard.compl_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } (hm : m + n = Fintype.card α) :
              (compl G α ).comp (compl G α hm) = MulActionHom.id G
              theorem Set.powersetCard.compl_bijective (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {n : } [DecidableEq α] [Fintype α] {m : } (hm : m + n = Fintype.card α) :

              The obvious map from a type to its 1-combinations, as an equivariant map.

              Equations
              Instances For

                The obvious map from a type to its 1-combinations, as an equivariant map.

                Equations
                Instances For
                  theorem Set.powersetCard.isPreprimitive_perm {α : Type u_2} [DecidableEq α] {n : } (h_one_le : 1 n) (hn : n < Nat.card α) ( : Nat.card α 2 * n) :

                  The action of Equiv.Perm α on Set.powersetCard α n is preprimitive provided 1 ≤ n < Nat.card α and Nat.card α ≠ 2 * n.

                  This is a consequence that the stabilizer of such a combination is a maximal subgroup.

                  If 3 ≤ Nat.card α, then alternatingGroup α acts transitively on Set.powersetCard α n.

                  If Nat.card α ≤ 2, then alternatinGroup α is trivial, and the result only holds in the trivial case where powersetCard α n is a subsingleton, that is, when n = 0 or Nat.card α ≤ n.

                  theorem Set.powersetCard.isPreprimitive_alternatingGroup {α : Type u_2} [DecidableEq α] [Fintype α] {n : } (h_three_le : 3 n) (hn : n < Nat.card α) ( : Nat.card α 2 * n) :

                  The action of alternatingGroup α on Set.powersetCard α n is preprimitive provided 1 ≤ n < Nat.card α and Nat.card α ≠ 2 * n.