Documentation

Mathlib.Logic.Equiv.Basic

Equivalence between types #

In this file we continue the work on equivalences begun in Mathlib/Logic/Equiv/Defs.lean, defining

Tags #

equivalence, congruence, bijective map

def Equiv.pprodEquivProd {α : Type u_9} {β : Type u_10} :
α ×' β α × β

PProd α β is equivalent to α × β

Equations
  • Equiv.pprodEquivProd = { toFun := fun (x : α ×' β) => (x.fst, x.snd), invFun := fun (x : α × β) => x.1, x.2, left_inv := , right_inv := }
Instances For
    @[simp]
    theorem Equiv.pprodEquivProd_apply {α : Type u_9} {β : Type u_10} (x : α ×' β) :
    pprodEquivProd x = (x.fst, x.snd)
    @[simp]
    theorem Equiv.pprodEquivProd_symm_apply {α : Type u_9} {β : Type u_10} (x : α × β) :
    pprodEquivProd.symm x = x.1, x.2
    def Equiv.pprodCongr {α : Sort u_1} {β : Sort u_4} {γ : Sort u_7} {δ : Sort u_8} (e₁ : α β) (e₂ : γ δ) :
    α ×' γ β ×' δ

    Product of two equivalences, in terms of PProd. If α ≃ β and γ ≃ δ, then PProd α γ ≃ PProd β δ.

    Equations
    • e₁.pprodCongr e₂ = { toFun := fun (x : α ×' γ) => e₁ x.fst, e₂ x.snd, invFun := fun (x : β ×' δ) => e₁.symm x.fst, e₂.symm x.snd, left_inv := , right_inv := }
    Instances For
      @[simp]
      theorem Equiv.pprodCongr_apply {α : Sort u_1} {β : Sort u_4} {γ : Sort u_7} {δ : Sort u_8} (e₁ : α β) (e₂ : γ δ) (x : α ×' γ) :
      (e₁.pprodCongr e₂) x = e₁ x.fst, e₂ x.snd
      def Equiv.pprodProd {α₁ : Sort u_2} {β₁ : Sort u_5} {α₂ : Type u_9} {β₂ : Type u_10} (ea : α₁ α₂) (eb : β₁ β₂) :
      α₁ ×' β₁ α₂ × β₂

      Combine two equivalences using PProd in the domain and Prod in the codomain.

      Equations
      Instances For
        @[simp]
        theorem Equiv.pprodProd_apply {α₁ : Sort u_2} {β₁ : Sort u_5} {α₂ : Type u_9} {β₂ : Type u_10} (ea : α₁ α₂) (eb : β₁ β₂) (a✝ : α₁ ×' β₁) :
        (ea.pprodProd eb) a✝ = (ea a✝.fst, eb a✝.snd)
        @[simp]
        theorem Equiv.pprodProd_symm_apply {α₁ : Sort u_2} {β₁ : Sort u_5} {α₂ : Type u_9} {β₂ : Type u_10} (ea : α₁ α₂) (eb : β₁ β₂) (a✝ : α₂ × β₂) :
        (ea.pprodProd eb).symm a✝ = (ea.pprodCongr eb).symm a✝.1, a✝.2
        def Equiv.prodPProd {α₂ : Sort u_3} {β₂ : Sort u_6} {α₁ : Type u_9} {β₁ : Type u_10} (ea : α₁ α₂) (eb : β₁ β₂) :
        α₁ × β₁ α₂ ×' β₂

        Combine two equivalences using PProd in the codomain and Prod in the domain.

        Equations
        • ea.prodPProd eb = (ea.symm.pprodProd eb.symm).symm
        Instances For
          @[simp]
          theorem Equiv.prodPProd_symm_apply {α₂ : Sort u_3} {β₂ : Sort u_6} {α₁ : Type u_9} {β₁ : Type u_10} (ea : α₁ α₂) (eb : β₁ β₂) (a✝ : α₂ ×' β₂) :
          (ea.prodPProd eb).symm a✝ = (ea.symm a✝.fst, eb.symm a✝.snd)
          @[simp]
          theorem Equiv.prodPProd_apply {α₂ : Sort u_3} {β₂ : Sort u_6} {α₁ : Type u_9} {β₁ : Type u_10} (ea : α₁ α₂) (eb : β₁ β₂) (a✝ : α₁ × β₁) :
          (ea.prodPProd eb) a✝ = (ea.symm.pprodCongr eb.symm).symm a✝.1, a✝.2
          def Equiv.pprodEquivProdPLift {α : Sort u_1} {β : Sort u_4} :
          α ×' β PLift α × PLift β

          PProd α β is equivalent to PLift α × PLift β

          Equations
          Instances For
            @[simp]
            theorem Equiv.pprodEquivProdPLift_symm_apply {α : Sort u_1} {β : Sort u_4} (a✝ : PLift α × PLift β) :
            pprodEquivProdPLift.symm a✝ = (Equiv.plift.symm.pprodCongr Equiv.plift.symm).symm a✝.1, a✝.2
            @[simp]
            theorem Equiv.pprodEquivProdPLift_apply {α : Sort u_1} {β : Sort u_4} (a✝ : α ×' β) :
            pprodEquivProdPLift a✝ = (Equiv.plift.symm a✝.fst, Equiv.plift.symm a✝.snd)
            def Equiv.prodCongr {α₁ : Type u_9} {α₂ : Type u_10} {β₁ : Type u_11} {β₂ : Type u_12} (e₁ : α₁ α₂) (e₂ : β₁ β₂) :
            α₁ × β₁ α₂ × β₂

            Product of two equivalences. If α₁ ≃ α₂ and β₁ ≃ β₂, then α₁ × β₁ ≃ α₂ × β₂. This is Prod.map as an equivalence.

            Equations
            • e₁.prodCongr e₂ = { toFun := Prod.map e₁ e₂, invFun := Prod.map e₁.symm e₂.symm, left_inv := , right_inv := }
            Instances For
              @[simp]
              theorem Equiv.prodCongr_apply {α₁ : Type u_9} {α₂ : Type u_10} {β₁ : Type u_11} {β₂ : Type u_12} (e₁ : α₁ α₂) (e₂ : β₁ β₂) :
              (e₁.prodCongr e₂) = Prod.map e₁ e₂
              @[simp]
              theorem Equiv.prodCongr_symm {α₁ : Type u_9} {α₂ : Type u_10} {β₁ : Type u_11} {β₂ : Type u_12} (e₁ : α₁ α₂) (e₂ : β₁ β₂) :
              (e₁.prodCongr e₂).symm = e₁.symm.prodCongr e₂.symm
              def Equiv.prodComm (α : Type u_9) (β : Type u_10) :
              α × β β × α

              Type product is commutative up to an equivalence: α × β ≃ β × α. This is Prod.swap as an equivalence.

              Equations
              Instances For
                @[simp]
                theorem Equiv.coe_prodComm (α : Type u_9) (β : Type u_10) :
                (prodComm α β) = Prod.swap
                @[simp]
                theorem Equiv.prodComm_apply {α : Type u_9} {β : Type u_10} (x : α × β) :
                (prodComm α β) x = x.swap
                @[simp]
                theorem Equiv.prodComm_symm (α : Type u_9) (β : Type u_10) :
                (prodComm α β).symm = prodComm β α
                def Equiv.prodAssoc (α : Type u_9) (β : Type u_10) (γ : Type u_11) :
                (α × β) × γ α × β × γ

                Type product is associative up to an equivalence.

                Equations
                • Equiv.prodAssoc α β γ = { toFun := fun (p : (α × β) × γ) => (p.1.1, p.1.2, p.2), invFun := fun (p : α × β × γ) => ((p.1, p.2.1), p.2.2), left_inv := , right_inv := }
                Instances For
                  @[simp]
                  theorem Equiv.prodAssoc_symm_apply (α : Type u_9) (β : Type u_10) (γ : Type u_11) (p : α × β × γ) :
                  (prodAssoc α β γ).symm p = ((p.1, p.2.1), p.2.2)
                  @[simp]
                  theorem Equiv.prodAssoc_apply (α : Type u_9) (β : Type u_10) (γ : Type u_11) (p : (α × β) × γ) :
                  (prodAssoc α β γ) p = (p.1.1, p.1.2, p.2)
                  def Equiv.prodProdProdComm (α : Type u_9) (β : Type u_10) (γ : Type u_11) (δ : Type u_12) :
                  (α × β) × γ × δ (α × γ) × β × δ

                  Four-way commutativity of prod. The name matches mul_mul_mul_comm.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem Equiv.prodProdProdComm_apply (α : Type u_9) (β : Type u_10) (γ : Type u_11) (δ : Type u_12) (abcd : (α × β) × γ × δ) :
                    (prodProdProdComm α β γ δ) abcd = ((abcd.1.1, abcd.2.1), abcd.1.2, abcd.2.2)
                    @[simp]
                    theorem Equiv.prodProdProdComm_symm (α : Type u_9) (β : Type u_10) (γ : Type u_11) (δ : Type u_12) :
                    (prodProdProdComm α β γ δ).symm = prodProdProdComm α γ β δ
                    def Equiv.curry (α : Type u_9) (β : Type u_10) (γ : Sort u_11) :
                    (α × βγ) (αβγ)

                    γ-valued functions on α × β are equivalent to functions α → β → γ.

                    Equations
                    Instances For
                      @[simp]
                      theorem Equiv.curry_apply (α : Type u_9) (β : Type u_10) (γ : Sort u_11) :
                      (curry α β γ) = Function.curry
                      @[simp]
                      theorem Equiv.curry_symm_apply (α : Type u_9) (β : Type u_10) (γ : Sort u_11) :
                      (curry α β γ).symm = Function.uncurry

                      PUnit is a right identity for type product up to an equivalence.

                      Equations
                      Instances For
                        @[simp]
                        theorem Equiv.prodPUnit_apply (α : Type u_9) (p : α × PUnit.{u_10 + 1}) :
                        (prodPUnit α) p = p.1
                        @[simp]
                        theorem Equiv.prodPUnit_symm_apply (α : Type u_9) (a : α) :
                        (prodPUnit α).symm a = (a, PUnit.unit)

                        PUnit is a left identity for type product up to an equivalence.

                        Equations
                        Instances For
                          @[simp]
                          theorem Equiv.punitProd_apply (α : Type u_9) (a✝ : PUnit.{u_10 + 1} × α) :
                          (punitProd α) a✝ = a✝.2
                          @[simp]
                          theorem Equiv.punitProd_symm_apply (α : Type u_9) (a✝ : α) :
                          (punitProd α).symm a✝ = (PUnit.unit, a✝)
                          def Equiv.sigmaPUnit (α : Type u_9) :
                          (_ : α) × PUnit.{u_10 + 1} α

                          PUnit is a right identity for dependent type product up to an equivalence.

                          Equations
                          Instances For
                            @[simp]
                            theorem Equiv.sigmaPUnit_apply (α : Type u_9) (p : (_ : α) × PUnit.{u_10 + 1}) :
                            (sigmaPUnit α) p = p.fst
                            @[simp]
                            theorem Equiv.sigmaPUnit_symm_apply_snd (α : Type u_9) (a : α) :
                            ((sigmaPUnit α).symm a).snd = PUnit.unit
                            @[simp]
                            theorem Equiv.sigmaPUnit_symm_apply_fst (α : Type u_9) (a : α) :
                            ((sigmaPUnit α).symm a).fst = a
                            def Equiv.prodUnique (α : Type u_9) (β : Type u_10) [Unique β] :
                            α × β α

                            Any Unique type is a right identity for type product up to equivalence.

                            Equations
                            Instances For
                              @[simp]
                              theorem Equiv.coe_prodUnique {α : Type u_9} {β : Type u_10} [Unique β] :
                              (prodUnique α β) = Prod.fst
                              theorem Equiv.prodUnique_apply {α : Type u_9} {β : Type u_10} [Unique β] (x : α × β) :
                              (prodUnique α β) x = x.1
                              @[simp]
                              theorem Equiv.prodUnique_symm_apply {α : Type u_9} {β : Type u_10} [Unique β] (x : α) :
                              (prodUnique α β).symm x = (x, default)
                              def Equiv.uniqueProd (α : Type u_9) (β : Type u_10) [Unique β] :
                              β × α α

                              Any Unique type is a left identity for type product up to equivalence.

                              Equations
                              Instances For
                                @[simp]
                                theorem Equiv.coe_uniqueProd {α : Type u_9} {β : Type u_10} [Unique β] :
                                (uniqueProd α β) = Prod.snd
                                theorem Equiv.uniqueProd_apply {α : Type u_9} {β : Type u_10} [Unique β] (x : β × α) :
                                (uniqueProd α β) x = x.2
                                @[simp]
                                theorem Equiv.uniqueProd_symm_apply {α : Type u_9} {β : Type u_10} [Unique β] (x : α) :
                                (uniqueProd α β).symm x = (default, x)
                                def Equiv.sigmaUnique (α : Type u_10) (β : αType u_9) [(a : α) → Unique (β a)] :
                                (a : α) × β a α

                                Any family of Unique types is a right identity for dependent type product up to equivalence.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem Equiv.coe_sigmaUnique {α : Type u_10} {β : αType u_9} [(a : α) → Unique (β a)] :
                                  theorem Equiv.sigmaUnique_apply {α : Type u_10} {β : αType u_9} [(a : α) → Unique (β a)] (x : (a : α) × β a) :
                                  (sigmaUnique α β) x = x.fst
                                  @[simp]
                                  theorem Equiv.sigmaUnique_symm_apply {α : Type u_10} {β : αType u_9} [(a : α) → Unique (β a)] (x : α) :
                                  (sigmaUnique α β).symm x = x, default
                                  def Equiv.prodEmpty (α : Type u_9) :

                                  Empty type is a right absorbing element for type product up to an equivalence.

                                  Equations
                                  Instances For
                                    def Equiv.emptyProd (α : Type u_9) :

                                    Empty type is a left absorbing element for type product up to an equivalence.

                                    Equations
                                    Instances For

                                      PEmpty type is a right absorbing element for type product up to an equivalence.

                                      Equations
                                      Instances For

                                        PEmpty type is a left absorbing element for type product up to an equivalence.

                                        Equations
                                        Instances For
                                          def Equiv.psumEquivSum (α : Type u_9) (β : Type u_10) :
                                          α ⊕' β α β

                                          PSum is equivalent to Sum.

                                          Equations
                                          Instances For
                                            def Equiv.sumCongr {α₁ : Type u_9} {α₂ : Type u_10} {β₁ : Type u_11} {β₂ : Type u_12} (ea : α₁ α₂) (eb : β₁ β₂) :
                                            α₁ β₁ α₂ β₂

                                            If α ≃ α' and β ≃ β', then α ⊕ β ≃ α' ⊕ β'. This is Sum.map as an equivalence.

                                            Equations
                                            • ea.sumCongr eb = { toFun := Sum.map ea eb, invFun := Sum.map ea.symm eb.symm, left_inv := , right_inv := }
                                            Instances For
                                              @[simp]
                                              theorem Equiv.sumCongr_apply {α₁ : Type u_9} {α₂ : Type u_10} {β₁ : Type u_11} {β₂ : Type u_12} (ea : α₁ α₂) (eb : β₁ β₂) (a✝ : α₁ β₁) :
                                              (ea.sumCongr eb) a✝ = Sum.map (⇑ea) (⇑eb) a✝
                                              def Equiv.psumCongr {α : Sort u_1} {β : Sort u_4} {γ : Sort u_7} {δ : Sort u_8} (e₁ : α β) (e₂ : γ δ) :
                                              α ⊕' γ β ⊕' δ

                                              If α ≃ α' and β ≃ β', then α ⊕' β ≃ α' ⊕' β'.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                def Equiv.psumSum {α₁ : Sort u_2} {β₁ : Sort u_5} {α₂ : Type u_9} {β₂ : Type u_10} (ea : α₁ α₂) (eb : β₁ β₂) :
                                                α₁ ⊕' β₁ α₂ β₂

                                                Combine two Equivs using PSum in the domain and Sum in the codomain.

                                                Equations
                                                Instances For
                                                  def Equiv.sumPSum {α₂ : Sort u_3} {β₂ : Sort u_6} {α₁ : Type u_9} {β₁ : Type u_10} (ea : α₁ α₂) (eb : β₁ β₂) :
                                                  α₁ β₁ α₂ ⊕' β₂

                                                  Combine two Equivs using Sum in the domain and PSum in the codomain.

                                                  Equations
                                                  • ea.sumPSum eb = (ea.symm.psumSum eb.symm).symm
                                                  Instances For
                                                    @[simp]
                                                    theorem Equiv.sumCongr_trans {α₁ : Type u_9} {α₂ : Type u_10} {β₁ : Type u_11} {β₂ : Type u_12} {γ₁ : Type u_13} {γ₂ : Type u_14} (e : α₁ β₁) (f : α₂ β₂) (g : β₁ γ₁) (h : β₂ γ₂) :
                                                    (e.sumCongr f).trans (g.sumCongr h) = (e.trans g).sumCongr (f.trans h)
                                                    @[simp]
                                                    theorem Equiv.sumCongr_symm {α : Type u_9} {β : Type u_10} {γ : Type u_11} {δ : Type u_12} (e : α β) (f : γ δ) :
                                                    (e.sumCongr f).symm = e.symm.sumCongr f.symm
                                                    @[simp]
                                                    theorem Equiv.sumCongr_refl {α : Type u_9} {β : Type u_10} :
                                                    (Equiv.refl α).sumCongr (Equiv.refl β) = Equiv.refl (α β)
                                                    def Equiv.subtypeSum {α : Type u_9} {β : Type u_10} {p : α βProp} :
                                                    { c : α β // p c } { a : α // p (Sum.inl a) } { b : β // p (Sum.inr b) }

                                                    A subtype of a sum is equivalent to a sum of subtypes.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[reducible, inline]
                                                      abbrev Equiv.Perm.sumCongr {α : Type u_9} {β : Type u_10} (ea : Perm α) (eb : Perm β) :
                                                      Perm (α β)

                                                      Combine a permutation of α and of β into a permutation of α ⊕ β.

                                                      Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem Equiv.Perm.sumCongr_apply {α : Type u_9} {β : Type u_10} (ea : Perm α) (eb : Perm β) (x : α β) :
                                                        (ea.sumCongr eb) x = Sum.map (⇑ea) (⇑eb) x
                                                        theorem Equiv.Perm.sumCongr_trans {α : Type u_9} {β : Type u_10} (e : Perm α) (f : Perm β) (g : Perm α) (h : Perm β) :
                                                        Equiv.trans (e.sumCongr f) (g.sumCongr h) = sumCongr (Equiv.trans e g) (Equiv.trans f h)
                                                        theorem Equiv.Perm.sumCongr_symm {α : Type u_9} {β : Type u_10} (e : Perm α) (f : Perm β) :
                                                        Equiv.symm (e.sumCongr f) = sumCongr (Equiv.symm e) (Equiv.symm f)
                                                        theorem Equiv.Perm.sumCongr_refl {α : Type u_9} {β : Type u_10} :

                                                        Bool is equivalent the sum of two PUnits.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For
                                                          def Equiv.sumComm (α : Type u_9) (β : Type u_10) :
                                                          α β β α

                                                          Sum of types is commutative up to an equivalence. This is Sum.swap as an equivalence.

                                                          Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem Equiv.sumComm_apply (α : Type u_9) (β : Type u_10) :
                                                            (sumComm α β) = Sum.swap
                                                            @[simp]
                                                            theorem Equiv.sumComm_symm (α : Type u_9) (β : Type u_10) :
                                                            (sumComm α β).symm = sumComm β α
                                                            def Equiv.sumAssoc (α : Type u_9) (β : Type u_10) (γ : Type u_11) :
                                                            (α β) γ α β γ

                                                            Sum of types is associative up to an equivalence.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              @[simp]
                                                              theorem Equiv.sumAssoc_apply_inl_inl {α : Type u_9} {β : Type u_10} {γ : Type u_11} (a : α) :
                                                              (sumAssoc α β γ) (Sum.inl (Sum.inl a)) = Sum.inl a
                                                              @[simp]
                                                              theorem Equiv.sumAssoc_apply_inl_inr {α : Type u_9} {β : Type u_10} {γ : Type u_11} (b : β) :
                                                              (sumAssoc α β γ) (Sum.inl (Sum.inr b)) = Sum.inr (Sum.inl b)
                                                              @[simp]
                                                              theorem Equiv.sumAssoc_apply_inr {α : Type u_9} {β : Type u_10} {γ : Type u_11} (c : γ) :
                                                              (sumAssoc α β γ) (Sum.inr c) = Sum.inr (Sum.inr c)
                                                              @[simp]
                                                              theorem Equiv.sumAssoc_symm_apply_inl {α : Type u_9} {β : Type u_10} {γ : Type u_11} (a : α) :
                                                              (sumAssoc α β γ).symm (Sum.inl a) = Sum.inl (Sum.inl a)
                                                              @[simp]
                                                              theorem Equiv.sumAssoc_symm_apply_inr_inl {α : Type u_9} {β : Type u_10} {γ : Type u_11} (b : β) :
                                                              (sumAssoc α β γ).symm (Sum.inr (Sum.inl b)) = Sum.inl (Sum.inr b)
                                                              @[simp]
                                                              theorem Equiv.sumAssoc_symm_apply_inr_inr {α : Type u_9} {β : Type u_10} {γ : Type u_11} (c : γ) :
                                                              (sumAssoc α β γ).symm (Sum.inr (Sum.inr c)) = Sum.inr c
                                                              def Equiv.sumSumSumComm (α : Type u_9) (β : Type u_10) (γ : Type u_11) (δ : Type u_12) :
                                                              (α β) γ δ (α γ) β δ

                                                              Four-way commutativity of sum. The name matches add_add_add_comm.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For
                                                                @[simp]
                                                                theorem Equiv.sumSumSumComm_apply (α : Type u_9) (β : Type u_10) (γ : Type u_11) (δ : Type u_12) (a✝ : (α β) γ δ) :
                                                                (sumSumSumComm α β γ δ) a✝ = ((sumAssoc (α γ) β δ) Sum.map (⇑(sumAssoc α γ β).symm) id Sum.map (Sum.map id (sumComm β γ)) id Sum.map (⇑(sumAssoc α β γ)) id (sumAssoc (α β) γ δ).symm) a✝
                                                                @[simp]
                                                                theorem Equiv.sumSumSumComm_symm (α : Type u_9) (β : Type u_10) (γ : Type u_11) (δ : Type u_12) :
                                                                (sumSumSumComm α β γ δ).symm = sumSumSumComm α γ β δ
                                                                def Equiv.sumEmpty (α : Type u_9) (β : Type u_10) [IsEmpty β] :
                                                                α β α

                                                                Sum with IsEmpty is equivalent to the original type.

                                                                Equations
                                                                Instances For
                                                                  @[simp]
                                                                  theorem Equiv.sumEmpty_symm_apply (α : Type u_9) (β : Type u_10) [IsEmpty β] (val : α) :
                                                                  (sumEmpty α β).symm val = Sum.inl val
                                                                  @[simp]
                                                                  theorem Equiv.sumEmpty_apply_inl {α : Type u_9} {β : Type u_10} [IsEmpty β] (a : α) :
                                                                  (sumEmpty α β) (Sum.inl a) = a
                                                                  def Equiv.emptySum (α : Type u_9) (β : Type u_10) [IsEmpty α] :
                                                                  α β β

                                                                  The sum of IsEmpty with any type is equivalent to that type.

                                                                  Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem Equiv.emptySum_symm_apply (α : Type u_9) (β : Type u_10) [IsEmpty α] (a✝ : β) :
                                                                    (emptySum α β).symm a✝ = Sum.inr a✝
                                                                    @[simp]
                                                                    theorem Equiv.emptySum_apply_inr {α : Type u_9} {β : Type u_10} [IsEmpty α] (b : β) :
                                                                    (emptySum α β) (Sum.inr b) = b

                                                                    Option α is equivalent to α ⊕ PUnit

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem Equiv.optionEquivSumPUnit_some {α : Type u_9} (a : α) :
                                                                      @[simp]
                                                                      theorem Equiv.optionEquivSumPUnit_coe {α : Type u_9} (a : α) :
                                                                      @[simp]
                                                                      theorem Equiv.optionEquivSumPUnit_symm_inl {α : Type u_9} (a : α) :
                                                                      def Equiv.optionIsSomeEquiv (α : Type u_9) :
                                                                      { x : Option α // x.isSome = true } α

                                                                      The set of x : Option α such that isSome x is equivalent to α.

                                                                      Equations
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem Equiv.optionIsSomeEquiv_apply (α : Type u_9) (o : { x : Option α // x.isSome = true }) :
                                                                        (optionIsSomeEquiv α) o = (↑o).get
                                                                        @[simp]
                                                                        theorem Equiv.optionIsSomeEquiv_symm_apply_coe (α : Type u_9) (x : α) :
                                                                        ((optionIsSomeEquiv α).symm x) = some x
                                                                        def Equiv.piOptionEquivProd {α : Type u_10} {β : Option αType u_9} :
                                                                        ((a : Option α) → β a) β none × ((a : α) → β (some a))

                                                                        The product over Option α of β a is the binary product of the product over α of β (some α) and β none

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem Equiv.piOptionEquivProd_apply {α : Type u_10} {β : Option αType u_9} (f : (a : Option α) → β a) :
                                                                          piOptionEquivProd f = (f none, fun (a : α) => f (some a))
                                                                          @[simp]
                                                                          theorem Equiv.piOptionEquivProd_symm_apply {α : Type u_10} {β : Option αType u_9} (x : β none × ((a : α) → β (some a))) (a : Option α) :
                                                                          def Equiv.sumEquivSigmaBool (α β : Type u_9) :
                                                                          α β (b : Bool) × Bool.casesOn b α β

                                                                          α ⊕ β is equivalent to a Sigma-type over Bool. Note that this definition assumes α and β to be types from the same universe, so it cannot be used directly to transfer theorems about sigma types to theorems about sum types. In many cases one can use ULift to work around this difficulty.

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For
                                                                            def Equiv.sigmaFiberEquiv {α : Type u_9} {β : Type u_10} (f : αβ) :
                                                                            (y : β) × { x : α // f x = y } α

                                                                            sigmaFiberEquiv f for f : α → β is the natural equivalence between the type of all fibres of f and the total space α.

                                                                            Equations
                                                                            • Equiv.sigmaFiberEquiv f = { toFun := fun (x : (y : β) × { x : α // f x = y }) => x.snd, invFun := fun (x : α) => f x, x, , left_inv := , right_inv := }
                                                                            Instances For
                                                                              @[simp]
                                                                              theorem Equiv.sigmaFiberEquiv_symm_apply_snd_coe {α : Type u_9} {β : Type u_10} (f : αβ) (x : α) :
                                                                              ((sigmaFiberEquiv f).symm x).snd = x
                                                                              @[simp]
                                                                              theorem Equiv.sigmaFiberEquiv_apply {α : Type u_9} {β : Type u_10} (f : αβ) (x : (y : β) × { x : α // f x = y }) :
                                                                              (sigmaFiberEquiv f) x = x.snd
                                                                              @[simp]
                                                                              theorem Equiv.sigmaFiberEquiv_symm_apply_fst {α : Type u_9} {β : Type u_10} (f : αβ) (x : α) :
                                                                              ((sigmaFiberEquiv f).symm x).fst = f x
                                                                              def Equiv.sigmaEquivOptionOfInhabited (α : Type u) [Inhabited α] [DecidableEq α] :
                                                                              (β : Type u) × (α Option β)

                                                                              Inhabited types are equivalent to Option β for some β by identifying default with none.

                                                                              Equations
                                                                              • One or more equations did not get rendered due to their size.
                                                                              Instances For
                                                                                def Equiv.sumCompl {α : Type u_9} (p : αProp) [DecidablePred p] :
                                                                                { a : α // p a } { a : α // ¬p a } α

                                                                                For any predicate p on α, the sum of the two subtypes {a // p a} and its complement {a // ¬ p a} is naturally equivalent to α.

                                                                                See subtypeOrEquiv for sum types over subtypes {x // p x} and {x // q x} that are not necessarily IsCompl p q.

                                                                                Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem Equiv.sumCompl_apply_inl {α : Type u_9} (p : αProp) [DecidablePred p] (x : { a : α // p a }) :
                                                                                  (sumCompl p) (Sum.inl x) = x
                                                                                  @[simp]
                                                                                  theorem Equiv.sumCompl_apply_inr {α : Type u_9} (p : αProp) [DecidablePred p] (x : { a : α // ¬p a }) :
                                                                                  (sumCompl p) (Sum.inr x) = x
                                                                                  @[simp]
                                                                                  theorem Equiv.sumCompl_apply_symm_of_pos {α : Type u_9} (p : αProp) [DecidablePred p] (a : α) (h : p a) :
                                                                                  (sumCompl p).symm a = Sum.inl a, h
                                                                                  @[simp]
                                                                                  theorem Equiv.sumCompl_apply_symm_of_neg {α : Type u_9} (p : αProp) [DecidablePred p] (a : α) (h : ¬p a) :
                                                                                  (sumCompl p).symm a = Sum.inr a, h
                                                                                  def Equiv.subtypeCongr {α : Type u_9} {p q : αProp} [DecidablePred p] [DecidablePred q] (e : { x : α // p x } { x : α // q x }) (f : { x : α // ¬p x } { x : α // ¬q x }) :
                                                                                  Perm α

                                                                                  Combines an Equiv between two subtypes with an Equiv between their complements to form a permutation.

                                                                                  Equations
                                                                                  Instances For
                                                                                    def Equiv.Perm.subtypeCongr {ε : Type u_9} {p : εProp} [DecidablePred p] (ep : Perm { a : ε // p a }) (en : Perm { a : ε // ¬p a }) :
                                                                                    Perm ε

                                                                                    Combining permutations on ε that permute only inside or outside the subtype split induced by p : ε → Prop constructs a permutation on ε.

                                                                                    Equations
                                                                                    Instances For
                                                                                      theorem Equiv.Perm.subtypeCongr.apply {ε : Type u_9} {p : εProp} [DecidablePred p] (ep : Perm { a : ε // p a }) (en : Perm { a : ε // ¬p a }) (a : ε) :
                                                                                      (ep.subtypeCongr en) a = if h : p a then (ep a, h) else (en a, h)
                                                                                      @[simp]
                                                                                      theorem Equiv.Perm.subtypeCongr.left_apply {ε : Type u_9} {p : εProp} [DecidablePred p] (ep : Perm { a : ε // p a }) (en : Perm { a : ε // ¬p a }) {a : ε} (h : p a) :
                                                                                      (ep.subtypeCongr en) a = (ep a, h)
                                                                                      @[simp]
                                                                                      theorem Equiv.Perm.subtypeCongr.left_apply_subtype {ε : Type u_9} {p : εProp} [DecidablePred p] (ep : Perm { a : ε // p a }) (en : Perm { a : ε // ¬p a }) (a : { a : ε // p a }) :
                                                                                      (ep.subtypeCongr en) a = (ep a)
                                                                                      @[simp]
                                                                                      theorem Equiv.Perm.subtypeCongr.right_apply {ε : Type u_9} {p : εProp} [DecidablePred p] (ep : Perm { a : ε // p a }) (en : Perm { a : ε // ¬p a }) {a : ε} (h : ¬p a) :
                                                                                      (ep.subtypeCongr en) a = (en a, h)
                                                                                      @[simp]
                                                                                      theorem Equiv.Perm.subtypeCongr.right_apply_subtype {ε : Type u_9} {p : εProp} [DecidablePred p] (ep : Perm { a : ε // p a }) (en : Perm { a : ε // ¬p a }) (a : { a : ε // ¬p a }) :
                                                                                      (ep.subtypeCongr en) a = (en a)
                                                                                      @[simp]
                                                                                      theorem Equiv.Perm.subtypeCongr.refl {ε : Type u_9} {p : εProp} [DecidablePred p] :
                                                                                      subtypeCongr (Equiv.refl { a : ε // p a }) (Equiv.refl { a : ε // ¬p a }) = Equiv.refl ε
                                                                                      @[simp]
                                                                                      theorem Equiv.Perm.subtypeCongr.symm {ε : Type u_9} {p : εProp} [DecidablePred p] (ep : Perm { a : ε // p a }) (en : Perm { a : ε // ¬p a }) :
                                                                                      Equiv.symm (ep.subtypeCongr en) = subtypeCongr (Equiv.symm ep) (Equiv.symm en)
                                                                                      @[simp]
                                                                                      theorem Equiv.Perm.subtypeCongr.trans {ε : Type u_9} {p : εProp} [DecidablePred p] (ep ep' : Perm { a : ε // p a }) (en en' : Perm { a : ε // ¬p a }) :
                                                                                      Equiv.trans (ep.subtypeCongr en) (ep'.subtypeCongr en') = subtypeCongr (Equiv.trans ep ep') (Equiv.trans en en')
                                                                                      def Equiv.subtypePreimage {α : Sort u_1} {β : Sort u_4} (p : αProp) [DecidablePred p] (x₀ : { a : α // p a }β) :
                                                                                      { x : αβ // x Subtype.val = x₀ } ({ a : α // ¬p a }β)

                                                                                      For a fixed function x₀ : {a // p a} → β defined on a subtype of α, the subtype of functions x : α → β that agree with x₀ on the subtype {a // p a} is naturally equivalent to the type of functions {a // ¬ p a} → β.

                                                                                      Equations
                                                                                      • One or more equations did not get rendered due to their size.
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem Equiv.subtypePreimage_apply {α : Sort u_1} {β : Sort u_4} (p : αProp) [DecidablePred p] (x₀ : { a : α // p a }β) (x : { x : αβ // x Subtype.val = x₀ }) (a : { a : α // ¬p a }) :
                                                                                        (subtypePreimage p x₀) x a = x a
                                                                                        @[simp]
                                                                                        theorem Equiv.subtypePreimage_symm_apply_coe {α : Sort u_1} {β : Sort u_4} (p : αProp) [DecidablePred p] (x₀ : { a : α // p a }β) (x : { a : α // ¬p a }β) (a : α) :
                                                                                        ((subtypePreimage p x₀).symm x) a = if h : p a then x₀ a, h else x a, h
                                                                                        theorem Equiv.subtypePreimage_symm_apply_coe_pos {α : Sort u_1} {β : Sort u_4} (p : αProp) [DecidablePred p] (x₀ : { a : α // p a }β) (x : { a : α // ¬p a }β) (a : α) (h : p a) :
                                                                                        ((subtypePreimage p x₀).symm x) a = x₀ a, h
                                                                                        theorem Equiv.subtypePreimage_symm_apply_coe_neg {α : Sort u_1} {β : Sort u_4} (p : αProp) [DecidablePred p] (x₀ : { a : α // p a }β) (x : { a : α // ¬p a }β) (a : α) (h : ¬p a) :
                                                                                        ((subtypePreimage p x₀).symm x) a = x a, h
                                                                                        def Equiv.piCongrRight {α : Sort u_1} {β₁ : αSort u_9} {β₂ : αSort u_10} (F : (a : α) → β₁ a β₂ a) :
                                                                                        ((a : α) → β₁ a) ((a : α) → β₂ a)

                                                                                        A family of equivalences ∀ a, β₁ a ≃ β₂ a generates an equivalence between ∀ a, β₁ a and ∀ a, β₂ a.

                                                                                        Equations
                                                                                        Instances For
                                                                                          @[simp]
                                                                                          theorem Equiv.piCongrRight_symm_apply {α : Sort u_1} {β₁ : αSort u_9} {β₂ : αSort u_10} (F : (a : α) → β₁ a β₂ a) (a✝ : (i : α) → β₂ i) (i : α) :
                                                                                          (piCongrRight F).symm a✝ i = Pi.map (fun (a : α) => (F a).symm) a✝ i
                                                                                          @[simp]
                                                                                          theorem Equiv.piCongrRight_apply {α : Sort u_1} {β₁ : αSort u_9} {β₂ : αSort u_10} (F : (a : α) → β₁ a β₂ a) (a✝ : (i : α) → β₁ i) (i : α) :
                                                                                          (piCongrRight F) a✝ i = Pi.map (fun (a : α) => (F a)) a✝ i
                                                                                          def Equiv.piComm {α : Sort u_1} {β : Sort u_4} (φ : αβSort u_9) :
                                                                                          ((a : α) → (b : β) → φ a b) ((b : β) → (a : α) → φ a b)

                                                                                          Given φ : α → β → Sort*, we have an equivalence between ∀ a b, φ a b and ∀ b a, φ a b. This is Function.swap as an Equiv.

                                                                                          Equations
                                                                                          Instances For
                                                                                            @[simp]
                                                                                            theorem Equiv.piComm_apply {α : Sort u_1} {β : Sort u_4} (φ : αβSort u_9) (f : (x : α) → (y : β) → φ x y) (y : β) (x : α) :
                                                                                            (piComm φ) f y x = Function.swap f y x
                                                                                            @[simp]
                                                                                            theorem Equiv.piComm_symm {α : Sort u_1} {β : Sort u_4} {φ : αβSort u_9} :
                                                                                            (piComm φ).symm = piComm (Function.swap φ)
                                                                                            def Equiv.piCurry {α : Type u_11} {β : αType u_9} (γ : (a : α) → β aType u_10) :
                                                                                            ((x : (i : α) × β i) → γ x.fst x.snd) ((a : α) → (b : β a) → γ a b)

                                                                                            Dependent curry equivalence: the type of dependent functions on Σ i, β i is equivalent to the type of dependent functions of two arguments (i.e., functions to the space of functions).

                                                                                            This is Sigma.curry and Sigma.uncurry together as an equiv.

                                                                                            Equations
                                                                                            Instances For
                                                                                              @[simp]
                                                                                              theorem Equiv.piCurry_apply {α : Type u_11} {β : αType u_9} (γ : (a : α) → β aType u_10) (f : (x : (i : α) × β i) → γ x.fst x.snd) :
                                                                                              @[simp]
                                                                                              theorem Equiv.piCurry_symm_apply {α : Type u_11} {β : αType u_9} (γ : (a : α) → β aType u_10) (f : (a : α) → (b : β a) → γ a b) :
                                                                                              (piCurry γ).symm f = Sigma.uncurry f
                                                                                              def Equiv.prodCongrLeft {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : α₁β₁ β₂) :
                                                                                              β₁ × α₁ β₂ × α₁

                                                                                              A family of equivalences ∀ (a : α₁), β₁ ≃ β₂ generates an equivalence between β₁ × α₁ and β₂ × α₁.

                                                                                              Equations
                                                                                              • Equiv.prodCongrLeft e = { toFun := fun (ab : β₁ × α₁) => ((e ab.2) ab.1, ab.2), invFun := fun (ab : β₂ × α₁) => ((e ab.2).symm ab.1, ab.2), left_inv := , right_inv := }
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem Equiv.prodCongrLeft_apply {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : α₁β₁ β₂) (b : β₁) (a : α₁) :
                                                                                                (prodCongrLeft e) (b, a) = ((e a) b, a)
                                                                                                theorem Equiv.prodCongr_refl_right {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : β₁ β₂) :
                                                                                                e.prodCongr (Equiv.refl α₁) = prodCongrLeft fun (x : α₁) => e
                                                                                                def Equiv.prodCongrRight {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : α₁β₁ β₂) :
                                                                                                α₁ × β₁ α₁ × β₂

                                                                                                A family of equivalences ∀ (a : α₁), β₁ ≃ β₂ generates an equivalence between α₁ × β₁ and α₁ × β₂.

                                                                                                Equations
                                                                                                • Equiv.prodCongrRight e = { toFun := fun (ab : α₁ × β₁) => (ab.1, (e ab.1) ab.2), invFun := fun (ab : α₁ × β₂) => (ab.1, (e ab.1).symm ab.2), left_inv := , right_inv := }
                                                                                                Instances For
                                                                                                  @[simp]
                                                                                                  theorem Equiv.prodCongrRight_apply {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : α₁β₁ β₂) (a : α₁) (b : β₁) :
                                                                                                  (prodCongrRight e) (a, b) = (a, (e a) b)
                                                                                                  theorem Equiv.prodCongr_refl_left {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : β₁ β₂) :
                                                                                                  (Equiv.refl α₁).prodCongr e = prodCongrRight fun (x : α₁) => e
                                                                                                  @[simp]
                                                                                                  theorem Equiv.prodCongrLeft_trans_prodComm {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : α₁β₁ β₂) :
                                                                                                  (prodCongrLeft e).trans (prodComm β₂ α₁) = (prodComm β₁ α₁).trans (prodCongrRight e)
                                                                                                  @[simp]
                                                                                                  theorem Equiv.prodCongrRight_trans_prodComm {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : α₁β₁ β₂) :
                                                                                                  (prodCongrRight e).trans (prodComm α₁ β₂) = (prodComm α₁ β₁).trans (prodCongrLeft e)
                                                                                                  theorem Equiv.sigmaCongrRight_sigmaEquivProd {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : α₁β₁ β₂) :
                                                                                                  (sigmaCongrRight e).trans (sigmaEquivProd α₁ β₂) = (sigmaEquivProd α₁ β₁).trans (prodCongrRight e)
                                                                                                  theorem Equiv.sigmaEquivProd_sigmaCongrRight {α₁ : Type u_9} {β₁ : Type u_11} {β₂ : Type u_12} (e : α₁β₁ β₂) :
                                                                                                  (sigmaEquivProd α₁ β₁).symm.trans (sigmaCongrRight e) = (prodCongrRight e).trans (sigmaEquivProd α₁ β₂).symm
                                                                                                  def Equiv.ofFiberEquiv {α : Type u_13} {β : Type u_14} {γ : Type u_15} {f : αγ} {g : βγ} (e : (c : γ) → { a : α // f a = c } { b : β // g b = c }) :
                                                                                                  α β

                                                                                                  A family of equivalences between fibers gives an equivalence between domains.

                                                                                                  Equations
                                                                                                  Instances For
                                                                                                    @[simp]
                                                                                                    theorem Equiv.ofFiberEquiv_symm_apply {α : Type u_13} {β : Type u_14} {γ : Type u_15} {f : αγ} {g : βγ} (e : (c : γ) → { a : α // f a = c } { b : β // g b = c }) (a✝ : β) :
                                                                                                    (ofFiberEquiv e).symm a✝ = ((sigmaCongrRight e).symm ((sigmaFiberEquiv g).symm a✝)).snd
                                                                                                    @[simp]
                                                                                                    theorem Equiv.ofFiberEquiv_apply {α : Type u_13} {β : Type u_14} {γ : Type u_15} {f : αγ} {g : βγ} (e : (c : γ) → { a : α // f a = c } { b : β // g b = c }) (a✝ : α) :
                                                                                                    (ofFiberEquiv e) a✝ = ((e (f a✝)) ((sigmaFiberEquiv f).symm a✝).snd)
                                                                                                    theorem Equiv.ofFiberEquiv_map {α : Type u_13} {β : Type u_14} {γ : Type u_15} {f : αγ} {g : βγ} (e : (c : γ) → { a : α // f a = c } { b : β // g b = c }) (a : α) :
                                                                                                    g ((ofFiberEquiv e) a) = f a
                                                                                                    def Equiv.prodShear {α₁ : Type u_9} {α₂ : Type u_10} {β₁ : Type u_11} {β₂ : Type u_12} (e₁ : α₁ α₂) (e₂ : α₁β₁ β₂) :
                                                                                                    α₁ × β₁ α₂ × β₂

                                                                                                    A variation on Equiv.prodCongr where the equivalence in the second component can depend on the first component. A typical example is a shear mapping, explaining the name of this declaration.

                                                                                                    Equations
                                                                                                    • e₁.prodShear e₂ = { toFun := fun (x : α₁ × β₁) => (e₁ x.1, (e₂ x.1) x.2), invFun := fun (y : α₂ × β₂) => (e₁.symm y.1, (e₂ (e₁.symm y.1)).symm y.2), left_inv := , right_inv := }
                                                                                                    Instances For
                                                                                                      @[simp]
                                                                                                      theorem Equiv.prodShear_symm_apply {α₁ : Type u_9} {α₂ : Type u_10} {β₁ : Type u_11} {β₂ : Type u_12} (e₁ : α₁ α₂) (e₂ : α₁β₁ β₂) :
                                                                                                      (e₁.prodShear e₂).symm = fun (y : α₂ × β₂) => (e₁.symm y.1, (e₂ (e₁.symm y.1)).symm y.2)
                                                                                                      @[simp]
                                                                                                      theorem Equiv.prodShear_apply {α₁ : Type u_9} {α₂ : Type u_10} {β₁ : Type u_11} {β₂ : Type u_12} (e₁ : α₁ α₂) (e₂ : α₁β₁ β₂) :
                                                                                                      (e₁.prodShear e₂) = fun (x : α₁ × β₁) => (e₁ x.1, (e₂ x.1) x.2)
                                                                                                      def Equiv.Perm.prodExtendRight {α₁ : Type u_9} {β₁ : Type u_10} [DecidableEq α₁] (a : α₁) (e : Perm β₁) :
                                                                                                      Perm (α₁ × β₁)

                                                                                                      prodExtendRight a e extends e : Perm β to Perm (α × β) by sending (a, b) to (a, e b) and keeping the other (a', b) fixed.

                                                                                                      Equations
                                                                                                      • One or more equations did not get rendered due to their size.
                                                                                                      Instances For
                                                                                                        @[simp]
                                                                                                        theorem Equiv.Perm.prodExtendRight_apply_eq {α₁ : Type u_9} {β₁ : Type u_10} [DecidableEq α₁] (a : α₁) (e : Perm β₁) (b : β₁) :
                                                                                                        (prodExtendRight a e) (a, b) = (a, e b)
                                                                                                        theorem Equiv.Perm.prodExtendRight_apply_ne {α₁ : Type u_9} {β₁ : Type u_10} [DecidableEq α₁] (e : Perm β₁) {a a' : α₁} (h : a' a) (b : β₁) :
                                                                                                        (prodExtendRight a e) (a', b) = (a', b)
                                                                                                        theorem Equiv.Perm.eq_of_prodExtendRight_ne {α₁ : Type u_9} {β₁ : Type u_10} [DecidableEq α₁] {e : Perm β₁} {a a' : α₁} {b : β₁} (h : (prodExtendRight a e) (a', b) (a', b)) :
                                                                                                        a' = a
                                                                                                        @[simp]
                                                                                                        theorem Equiv.Perm.fst_prodExtendRight {α₁ : Type u_9} {β₁ : Type u_10} [DecidableEq α₁] (a : α₁) (e : Perm β₁) (ab : α₁ × β₁) :
                                                                                                        ((prodExtendRight a e) ab).1 = ab.1
                                                                                                        def Equiv.arrowProdEquivProdArrow (α : Type u_9) (β : Type u_10) (γ : Type u_11) :
                                                                                                        (γα × β) (γα) × (γβ)

                                                                                                        The type of functions to a product α × β is equivalent to the type of pairs of functions γ → α and γ → β.

                                                                                                        Equations
                                                                                                        • One or more equations did not get rendered due to their size.
                                                                                                        Instances For
                                                                                                          def Equiv.sumPiEquivProdPi {ι : Type u_10} {ι' : Type u_11} (π : ι ι'Type u_9) :
                                                                                                          ((i : ι ι') → π i) ((i : ι) → π (Sum.inl i)) × ((i' : ι') → π (Sum.inr i'))

                                                                                                          The type of dependent functions on a sum type ι ⊕ ι' is equivalent to the type of pairs of functions on ι and on ι'. This is a dependent version of Equiv.sumArrowEquivProdArrow.

                                                                                                          Equations
                                                                                                          • One or more equations did not get rendered due to their size.
                                                                                                          Instances For
                                                                                                            @[simp]
                                                                                                            theorem Equiv.sumPiEquivProdPi_symm_apply {ι : Type u_10} {ι' : Type u_11} (π : ι ι'Type u_9) (g : ((i : ι) → π (Sum.inl i)) × ((i' : ι') → π (Sum.inr i'))) (t : ι ι') :
                                                                                                            (sumPiEquivProdPi π).symm g t = Sum.rec g.1 g.2 t
                                                                                                            @[simp]
                                                                                                            theorem Equiv.sumPiEquivProdPi_apply {ι : Type u_10} {ι' : Type u_11} (π : ι ι'Type u_9) (f : (i : ι ι') → π i) :
                                                                                                            (sumPiEquivProdPi π) f = (fun (i : ι) => f (Sum.inl i), fun (i' : ι') => f (Sum.inr i'))
                                                                                                            def Equiv.prodPiEquivSumPi {ι : Type u_9} {ι' : Type u_10} (π : ιType u) (π' : ι'Type u) :
                                                                                                            ((i : ι) → π i) × ((i' : ι') → π' i') ((i : ι ι') → Sum.elim π π' i)

                                                                                                            The equivalence between a product of two dependent functions types and a single dependent function type. Basically a symmetric version of Equiv.sumPiEquivProdPi.

                                                                                                            Equations
                                                                                                            Instances For
                                                                                                              @[simp]
                                                                                                              theorem Equiv.prodPiEquivSumPi_apply {ι : Type u_9} {ι' : Type u_10} (π : ιType u) (π' : ι'Type u) (a✝ : ((i : ι) → Sum.elim π π' (Sum.inl i)) × ((i' : ι') → Sum.elim π π' (Sum.inr i'))) (i : ι ι') :
                                                                                                              (prodPiEquivSumPi π π') a✝ i = (sumPiEquivProdPi (Sum.elim π π')).symm a✝ i
                                                                                                              @[simp]
                                                                                                              theorem Equiv.prodPiEquivSumPi_symm_apply {ι : Type u_9} {ι' : Type u_10} (π : ιType u) (π' : ι'Type u) (a✝ : (i : ι ι') → Sum.elim π π' i) :
                                                                                                              (prodPiEquivSumPi π π').symm a✝ = (sumPiEquivProdPi (Sum.elim π π')) a✝
                                                                                                              def Equiv.sumArrowEquivProdArrow (α : Type u_9) (β : Type u_10) (γ : Type u_11) :
                                                                                                              (α βγ) (αγ) × (βγ)

                                                                                                              The type of functions on a sum type α ⊕ β is equivalent to the type of pairs of functions on α and on β.

                                                                                                              Equations
                                                                                                              Instances For
                                                                                                                @[simp]
                                                                                                                theorem Equiv.sumArrowEquivProdArrow_apply_fst {α : Type u_9} {β : Type u_10} {γ : Type u_11} (f : α βγ) (a : α) :
                                                                                                                ((sumArrowEquivProdArrow α β γ) f).1 a = f (Sum.inl a)
                                                                                                                @[simp]
                                                                                                                theorem Equiv.sumArrowEquivProdArrow_apply_snd {α : Type u_9} {β : Type u_10} {γ : Type u_11} (f : α βγ) (b : β) :
                                                                                                                ((sumArrowEquivProdArrow α β γ) f).2 b = f (Sum.inr b)
                                                                                                                @[simp]
                                                                                                                theorem Equiv.sumArrowEquivProdArrow_symm_apply_inl {α : Type u_9} {β : Type u_10} {γ : Type u_11} (f : αγ) (g : βγ) (a : α) :
                                                                                                                (sumArrowEquivProdArrow α β γ).symm (f, g) (Sum.inl a) = f a
                                                                                                                @[simp]
                                                                                                                theorem Equiv.sumArrowEquivProdArrow_symm_apply_inr {α : Type u_9} {β : Type u_10} {γ : Type u_11} (f : αγ) (g : βγ) (b : β) :
                                                                                                                (sumArrowEquivProdArrow α β γ).symm (f, g) (Sum.inr b) = g b
                                                                                                                def Equiv.sumProdDistrib (α : Type u_9) (β : Type u_10) (γ : Type u_11) :
                                                                                                                (α β) × γ α × γ β × γ

                                                                                                                Type product is right distributive with respect to type sum up to an equivalence.

                                                                                                                Equations
                                                                                                                • One or more equations did not get rendered due to their size.
                                                                                                                Instances For
                                                                                                                  @[simp]
                                                                                                                  theorem Equiv.sumProdDistrib_apply_left {α : Type u_9} {β : Type u_10} {γ : Type u_11} (a : α) (c : γ) :
                                                                                                                  (sumProdDistrib α β γ) (Sum.inl a, c) = Sum.inl (a, c)
                                                                                                                  @[simp]
                                                                                                                  theorem Equiv.sumProdDistrib_apply_right {α : Type u_9} {β : Type u_10} {γ : Type u_11} (b : β) (c : γ) :
                                                                                                                  (sumProdDistrib α β γ) (Sum.inr b, c) = Sum.inr (b, c)
                                                                                                                  @[simp]
                                                                                                                  theorem Equiv.sumProdDistrib_symm_apply_left {α : Type u_9} {β : Type u_10} {γ : Type u_11} (a : α × γ) :
                                                                                                                  (sumProdDistrib α β γ).symm (Sum.inl a) = (Sum.inl a.1, a.2)
                                                                                                                  @[simp]
                                                                                                                  theorem Equiv.sumProdDistrib_symm_apply_right {α : Type u_9} {β : Type u_10} {γ : Type u_11} (b : β × γ) :
                                                                                                                  (sumProdDistrib α β γ).symm (Sum.inr b) = (Sum.inr b.1, b.2)
                                                                                                                  def Equiv.prodSumDistrib (α : Type u_9) (β : Type u_10) (γ : Type u_11) :
                                                                                                                  α × (β γ) α × β α × γ

                                                                                                                  Type product is left distributive with respect to type sum up to an equivalence.

                                                                                                                  Equations
                                                                                                                  Instances For
                                                                                                                    @[simp]
                                                                                                                    theorem Equiv.prodSumDistrib_apply_left {α : Type u_9} {β : Type u_10} {γ : Type u_11} (a : α) (b : β) :
                                                                                                                    (prodSumDistrib α β γ) (a, Sum.inl b) = Sum.inl (a, b)
                                                                                                                    @[simp]
                                                                                                                    theorem Equiv.prodSumDistrib_apply_right {α : Type u_9} {β : Type u_10} {γ : Type u_11} (a : α) (c : γ) :
                                                                                                                    (prodSumDistrib α β γ) (a, Sum.inr c) = Sum.inr (a, c)
                                                                                                                    @[simp]
                                                                                                                    theorem Equiv.prodSumDistrib_symm_apply_left {α : Type u_9} {β : Type u_10} {γ : Type u_11} (a : α × β) :
                                                                                                                    (prodSumDistrib α β γ).symm (Sum.inl a) = (a.1, Sum.inl a.2)
                                                                                                                    @[simp]
                                                                                                                    theorem Equiv.prodSumDistrib_symm_apply_right {α : Type u_9} {β : Type u_10} {γ : Type u_11} (a : α × γ) :
                                                                                                                    (prodSumDistrib α β γ).symm (Sum.inr a) = (a.1, Sum.inr a.2)
                                                                                                                    def Equiv.sigmaSumDistrib {ι : Type u_11} (α : ιType u_9) (β : ιType u_10) :
                                                                                                                    (i : ι) × (α i β i) (i : ι) × α i (i : ι) × β i

                                                                                                                    An indexed sum of disjoint sums of types is equivalent to the sum of the indexed sums.

                                                                                                                    Equations
                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                    Instances For
                                                                                                                      @[simp]
                                                                                                                      theorem Equiv.sigmaSumDistrib_apply {ι : Type u_11} (α : ιType u_9) (β : ιType u_10) (p : (i : ι) × (α i β i)) :
                                                                                                                      (sigmaSumDistrib α β) p = Sum.map (Sigma.mk p.fst) (Sigma.mk p.fst) p.snd
                                                                                                                      @[simp]
                                                                                                                      theorem Equiv.sigmaSumDistrib_symm_apply {ι : Type u_11} (α : ιType u_9) (β : ιType u_10) (a✝ : (i : ι) × α i (i : ι) × β i) :
                                                                                                                      (sigmaSumDistrib α β).symm a✝ = Sum.elim (Sigma.map id fun (x : ι) => Sum.inl) (Sigma.map id fun (x : ι) => Sum.inr) a✝
                                                                                                                      def Equiv.sigmaProdDistrib {ι : Type u_10} (α : ιType u_9) (β : Type u_11) :
                                                                                                                      ((i : ι) × α i) × β (i : ι) × α i × β

                                                                                                                      The product of an indexed sum of types (formally, a Sigma-type Σ i, α i) by a type β is equivalent to the sum of products Σ i, (α i × β).

                                                                                                                      Equations
                                                                                                                      • One or more equations did not get rendered due to their size.
                                                                                                                      Instances For
                                                                                                                        @[simp]
                                                                                                                        theorem Equiv.sigmaProdDistrib_symm_apply {ι : Type u_10} (α : ιType u_9) (β : Type u_11) (p : (i : ι) × α i × β) :
                                                                                                                        (sigmaProdDistrib α β).symm p = (p.fst, p.snd.1, p.snd.2)
                                                                                                                        @[simp]
                                                                                                                        theorem Equiv.sigmaProdDistrib_apply {ι : Type u_10} (α : ιType u_9) (β : Type u_11) (p : ((i : ι) × α i) × β) :
                                                                                                                        (sigmaProdDistrib α β) p = p.1.fst, (p.1.snd, p.2)
                                                                                                                        def Equiv.sigmaNatSucc (f : Type u) :
                                                                                                                        (n : ) × f n f 0 (n : ) × f (n + 1)

                                                                                                                        An equivalence that separates out the 0th fiber of (Σ (n : ℕ), f n).

                                                                                                                        Equations
                                                                                                                        • One or more equations did not get rendered due to their size.
                                                                                                                        Instances For
                                                                                                                          def Equiv.boolProdEquivSum (α : Type u_9) :
                                                                                                                          Bool × α α α

                                                                                                                          The product Bool × α is equivalent to α ⊕ α.

                                                                                                                          Equations
                                                                                                                          Instances For
                                                                                                                            @[simp]
                                                                                                                            theorem Equiv.boolProdEquivSum_apply (α : Type u_9) (p : Bool × α) :
                                                                                                                            @[simp]
                                                                                                                            theorem Equiv.boolProdEquivSum_symm_apply (α : Type u_9) (a✝ : α α) :
                                                                                                                            def Equiv.boolArrowEquivProd (α : Type u_9) :
                                                                                                                            (Boolα) α × α

                                                                                                                            The function type Bool → α is equivalent to α × α.

                                                                                                                            Equations
                                                                                                                            Instances For
                                                                                                                              @[simp]
                                                                                                                              theorem Equiv.boolArrowEquivProd_apply (α : Type u_9) (f : Boolα) :
                                                                                                                              @[simp]
                                                                                                                              theorem Equiv.boolArrowEquivProd_symm_apply (α : Type u_9) (p : α × α) (b : Bool) :
                                                                                                                              (boolArrowEquivProd α).symm p b = Bool.casesOn b p.1 p.2

                                                                                                                              The set of natural numbers is equivalent to ℕ ⊕ PUnit.

                                                                                                                              Equations
                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                              Instances For

                                                                                                                                The type of integer numbers is equivalent to ℕ ⊕ ℕ.

                                                                                                                                Equations
                                                                                                                                • One or more equations did not get rendered due to their size.
                                                                                                                                Instances For
                                                                                                                                  def Equiv.listEquivOfEquiv {α : Type u_9} {β : Type u_10} (e : α β) :
                                                                                                                                  List α List β

                                                                                                                                  An equivalence between α and β generates an equivalence between List α and List β.

                                                                                                                                  Equations
                                                                                                                                  • e.listEquivOfEquiv = { toFun := List.map e, invFun := List.map e.symm, left_inv := , right_inv := }
                                                                                                                                  Instances For
                                                                                                                                    def Equiv.uniqueCongr {α : Sort u_1} {β : Sort u_4} (e : α β) :

                                                                                                                                    If α is equivalent to β, then Unique α is equivalent to Unique β.

                                                                                                                                    Equations
                                                                                                                                    • e.uniqueCongr = { toFun := fun (h : Unique α) => e.symm.unique, invFun := fun (h : Unique β) => e.unique, left_inv := , right_inv := }
                                                                                                                                    Instances For
                                                                                                                                      theorem Equiv.isEmpty_congr {α : Sort u_1} {β : Sort u_4} (e : α β) :

                                                                                                                                      If α is equivalent to β, then IsEmpty α is equivalent to IsEmpty β.

                                                                                                                                      theorem Equiv.isEmpty {α : Sort u_1} {β : Sort u_4} (e : α β) [IsEmpty β] :
                                                                                                                                      def Equiv.subtypeEquiv {α : Sort u_1} {β : Sort u_4} {p : αProp} {q : βProp} (e : α β) (h : ∀ (a : α), p a q (e a)) :
                                                                                                                                      { a : α // p a } { b : β // q b }

                                                                                                                                      If α is equivalent to β and the predicates p : α → Prop and q : β → Prop are equivalent at corresponding points, then {a // p a} is equivalent to {b // q b}. For the statement where α = β, that is, e : perm α, see Perm.subtypePerm.

                                                                                                                                      Equations
                                                                                                                                      • e.subtypeEquiv h = { toFun := fun (a : { a : α // p a }) => e a, , invFun := fun (b : { b : β // q b }) => e.symm b, , left_inv := , right_inv := }
                                                                                                                                      Instances For
                                                                                                                                        theorem Equiv.coe_subtypeEquiv_eq_map {X : Sort u_9} {Y : Sort u_10} {p : XProp} {q : YProp} (e : X Y) (h : ∀ (x : X), p x q (e x)) :
                                                                                                                                        (e.subtypeEquiv h) = Subtype.map e
                                                                                                                                        @[simp]
                                                                                                                                        theorem Equiv.subtypeEquiv_refl {α : Sort u_1} {p : αProp} (h : ∀ (a : α), p a p ((Equiv.refl α) a) := ) :
                                                                                                                                        (Equiv.refl α).subtypeEquiv h = Equiv.refl { a : α // p a }
                                                                                                                                        @[simp]
                                                                                                                                        theorem Equiv.subtypeEquiv_symm {α : Sort u_1} {β : Sort u_4} {p : αProp} {q : βProp} (e : α β) (h : ∀ (a : α), p a q (e a)) :
                                                                                                                                        (e.subtypeEquiv h).symm = e.symm.subtypeEquiv
                                                                                                                                        @[simp]
                                                                                                                                        theorem Equiv.subtypeEquiv_trans {α : Sort u_1} {β : Sort u_4} {γ : Sort u_7} {p : αProp} {q : βProp} {r : γProp} (e : α β) (f : β γ) (h : ∀ (a : α), p a q (e a)) (h' : ∀ (b : β), q b r (f b)) :
                                                                                                                                        (e.subtypeEquiv h).trans (f.subtypeEquiv h') = (e.trans f).subtypeEquiv
                                                                                                                                        @[simp]
                                                                                                                                        theorem Equiv.subtypeEquiv_apply {α : Sort u_1} {β : Sort u_4} {p : αProp} {q : βProp} (e : α β) (h : ∀ (a : α), p a q (e a)) (x : { x : α // p x }) :
                                                                                                                                        (e.subtypeEquiv h) x = e x,
                                                                                                                                        def Equiv.subtypeEquivRight {α : Sort u_1} {p q : αProp} (e : ∀ (x : α), p x q x) :
                                                                                                                                        { x : α // p x } { x : α // q x }

                                                                                                                                        If two predicates p and q are pointwise equivalent, then {x // p x} is equivalent to {x // q x}.

                                                                                                                                        Equations
                                                                                                                                        Instances For
                                                                                                                                          @[simp]
                                                                                                                                          theorem Equiv.subtypeEquivRight_symm_apply_coe {α : Sort u_1} {p q : αProp} (e : ∀ (x : α), p x q x) (b : { b : α // q b }) :
                                                                                                                                          ((subtypeEquivRight e).symm b) = b
                                                                                                                                          @[simp]
                                                                                                                                          theorem Equiv.subtypeEquivRight_apply_coe {α : Sort u_1} {p q : αProp} (e : ∀ (x : α), p x q x) (a : { a : α // p a }) :
                                                                                                                                          ((subtypeEquivRight e) a) = a
                                                                                                                                          theorem Equiv.subtypeEquivRight_apply {α : Sort u_1} {p q : αProp} (e : ∀ (x : α), p x q x) (z : { x : α // p x }) :
                                                                                                                                          (subtypeEquivRight e) z = z,
                                                                                                                                          theorem Equiv.subtypeEquivRight_symm_apply {α : Sort u_1} {p q : αProp} (e : ∀ (x : α), p x q x) (z : { x : α // q x }) :
                                                                                                                                          (subtypeEquivRight e).symm z = z,
                                                                                                                                          def Equiv.subtypeEquivOfSubtype {α : Sort u_1} {β : Sort u_4} {p : βProp} (e : α β) :
                                                                                                                                          { a : α // p (e a) } { b : β // p b }

                                                                                                                                          If α ≃ β, then for any predicate p : β → Prop the subtype {a // p (e a)} is equivalent to the subtype {b // p b}.

                                                                                                                                          Equations
                                                                                                                                          • e.subtypeEquivOfSubtype = e.subtypeEquiv
                                                                                                                                          Instances For
                                                                                                                                            def Equiv.subtypeEquivOfSubtype' {α : Sort u_1} {β : Sort u_4} {p : αProp} (e : α β) :
                                                                                                                                            { a : α // p a } { b : β // p (e.symm b) }

                                                                                                                                            If α ≃ β, then for any predicate p : α → Prop the subtype {a // p a} is equivalent to the subtype {b // p (e.symm b)}. This version is used by equiv_rw.

                                                                                                                                            Equations
                                                                                                                                            • e.subtypeEquivOfSubtype' = e.symm.subtypeEquivOfSubtype.symm
                                                                                                                                            Instances For
                                                                                                                                              def Equiv.subtypeEquivProp {α : Sort u_1} {p q : αProp} (h : p = q) :

                                                                                                                                              If two predicates are equal, then the corresponding subtypes are equivalent.

                                                                                                                                              Equations
                                                                                                                                              Instances For
                                                                                                                                                def Equiv.subtypeSubtypeEquivSubtypeExists {α : Sort u_1} (p : αProp) (q : Subtype pProp) :
                                                                                                                                                Subtype q { a : α // ∃ (h : p a), q a, h }

                                                                                                                                                A subtype of a subtype is equivalent to the subtype of elements satisfying both predicates. This version allows the “inner” predicate to depend on h : p a.

                                                                                                                                                Equations
                                                                                                                                                Instances For
                                                                                                                                                  @[simp]
                                                                                                                                                  theorem Equiv.subtypeSubtypeEquivSubtypeExists_apply_coe {α : Sort u_1} (p : αProp) (q : Subtype pProp) (a : Subtype q) :
                                                                                                                                                  ((subtypeSubtypeEquivSubtypeExists p q) a) = a
                                                                                                                                                  @[simp]
                                                                                                                                                  theorem Equiv.subtypeSubtypeEquivSubtypeExists_symm_apply_coe_coe {α : Sort u_1} (p : αProp) (q : Subtype pProp) (a : { a : α // ∃ (h : p a), q a, h }) :
                                                                                                                                                  ((subtypeSubtypeEquivSubtypeExists p q).symm a) = a
                                                                                                                                                  def Equiv.subtypeSubtypeEquivSubtypeInter {α : Type u} (p q : αProp) :
                                                                                                                                                  { x : Subtype p // q x } { x : α // p x q x }

                                                                                                                                                  A subtype of a subtype is equivalent to the subtype of elements satisfying both predicates.

                                                                                                                                                  Equations
                                                                                                                                                  Instances For
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem Equiv.subtypeSubtypeEquivSubtypeInter_symm_apply_coe_coe {α : Type u} (p q : αProp) (a✝ : { x : α // p x q x }) :
                                                                                                                                                    ((subtypeSubtypeEquivSubtypeInter p q).symm a✝) = a✝
                                                                                                                                                    @[simp]
                                                                                                                                                    theorem Equiv.subtypeSubtypeEquivSubtypeInter_apply_coe {α : Type u} (p q : αProp) (a✝ : { x : Subtype p // q x }) :
                                                                                                                                                    ((subtypeSubtypeEquivSubtypeInter p q) a✝) = a✝
                                                                                                                                                    def Equiv.subtypeSubtypeEquivSubtype {α : Type u_9} {p q : αProp} (h : ∀ {x : α}, q xp x) :
                                                                                                                                                    { x : Subtype p // q x } Subtype q

                                                                                                                                                    If the outer subtype has more restrictive predicate than the inner one, then we can drop the latter.

                                                                                                                                                    Equations
                                                                                                                                                    Instances For
                                                                                                                                                      @[simp]
                                                                                                                                                      theorem Equiv.subtypeSubtypeEquivSubtype_apply_coe {α : Type u_9} {p q : αProp} (h : ∀ {x : α}, q xp x) (a✝ : { x : Subtype p // q x }) :
                                                                                                                                                      ((subtypeSubtypeEquivSubtype h) a✝) = a✝
                                                                                                                                                      @[simp]
                                                                                                                                                      theorem Equiv.subtypeSubtypeEquivSubtype_symm_apply_coe_coe {α : Type u_9} {p q : αProp} (h : ∀ {x : α}, q xp x) (a✝ : Subtype q) :
                                                                                                                                                      ((subtypeSubtypeEquivSubtype h).symm a✝) = a✝
                                                                                                                                                      def Equiv.subtypeUnivEquiv {α : Type u_9} {p : αProp} (h : ∀ (x : α), p x) :

                                                                                                                                                      If a proposition holds for all elements, then the subtype is equivalent to the original type.

                                                                                                                                                      Equations
                                                                                                                                                      Instances For
                                                                                                                                                        @[simp]
                                                                                                                                                        theorem Equiv.subtypeUnivEquiv_apply {α : Type u_9} {p : αProp} (h : ∀ (x : α), p x) (x : Subtype p) :
                                                                                                                                                        (subtypeUnivEquiv h) x = x
                                                                                                                                                        @[simp]
                                                                                                                                                        theorem Equiv.subtypeUnivEquiv_symm_apply {α : Type u_9} {p : αProp} (h : ∀ (x : α), p x) (x : α) :
                                                                                                                                                        (subtypeUnivEquiv h).symm x = x,
                                                                                                                                                        def Equiv.subtypeSigmaEquiv {α : Type u_9} (p : αType v) (q : αProp) :
                                                                                                                                                        { y : Sigma p // q y.fst } (x : Subtype q) × p x

                                                                                                                                                        A subtype of a sigma-type is a sigma-type over a subtype.

                                                                                                                                                        Equations
                                                                                                                                                        • One or more equations did not get rendered due to their size.
                                                                                                                                                        Instances For
                                                                                                                                                          def Equiv.sigmaSubtypeEquivOfSubset {α : Type u_9} (p : αType v) (q : αProp) (h : ∀ (x : α), p xq x) :
                                                                                                                                                          (x : Subtype q) × p x (x : α) × p x

                                                                                                                                                          A sigma type over a subtype is equivalent to the sigma set over the original type, if the fiber is empty outside of the subset

                                                                                                                                                          Equations
                                                                                                                                                          Instances For
                                                                                                                                                            def Equiv.sigmaSubtypeFiberEquiv {α : Type u_9} {β : Type u_10} (f : αβ) (p : βProp) (h : ∀ (x : α), p (f x)) :
                                                                                                                                                            (y : Subtype p) × { x : α // f x = y } α

                                                                                                                                                            If a predicate p : β → Prop is true on the range of a map f : α → β, then Σ y : {y // p y}, {x // f x = y} is equivalent to α.

                                                                                                                                                            Equations
                                                                                                                                                            Instances For
                                                                                                                                                              def Equiv.sigmaSubtypeFiberEquivSubtype {α : Type u_9} {β : Type u_10} (f : αβ) {p : αProp} {q : βProp} (h : ∀ (x : α), p x q (f x)) :
                                                                                                                                                              (y : Subtype q) × { x : α // f x = y } Subtype p

                                                                                                                                                              If for each x we have p x ↔ q (f x), then Σ y : {y // q y}, f ⁻¹' {y} is equivalent to {x // p x}.

                                                                                                                                                              Equations
                                                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                                                              Instances For
                                                                                                                                                                def Equiv.sigmaOptionEquivOfSome {α : Type u_9} (p : Option αType v) (h : p noneFalse) :
                                                                                                                                                                (x : Option α) × p x (x : α) × p (some x)

                                                                                                                                                                A sigma type over an Option is equivalent to the sigma set over the original type, if the fiber is empty at none.

                                                                                                                                                                Equations
                                                                                                                                                                Instances For
                                                                                                                                                                  def Equiv.piEquivSubtypeSigma (ι : Type u_10) (π : ιType u_9) :
                                                                                                                                                                  ((i : ι) → π i) { f : ι(i : ι) × π i // ∀ (i : ι), (f i).fst = i }

                                                                                                                                                                  The Pi-type ∀ i, π i is equivalent to the type of sections f : ι → Σ i, π i of the Sigma type such that for all i we have (f i).fst = i.

                                                                                                                                                                  Equations
                                                                                                                                                                  • One or more equations did not get rendered due to their size.
                                                                                                                                                                  Instances For
                                                                                                                                                                    def Equiv.subtypePiEquivPi {α : Sort u_1} {β : αSort v} {p : (a : α) → β aProp} :
                                                                                                                                                                    { f : (a : α) → β a // ∀ (a : α), p a (f a) } ((a : α) → { b : β a // p a b })

                                                                                                                                                                    The type of functions f : ∀ a, β a such that for all a we have p a (f a) is equivalent to the type of functions ∀ a, {b : β a // p a b}.

                                                                                                                                                                    Equations
                                                                                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                                                                                    Instances For
                                                                                                                                                                      def Equiv.subtypeProdEquivProd {α : Type u_9} {β : Type u_10} {p : αProp} {q : βProp} :
                                                                                                                                                                      { c : α × β // p c.1 q c.2 } { a : α // p a } × { b : β // q b }

                                                                                                                                                                      A subtype of a product defined by componentwise conditions is equivalent to a product of subtypes.

                                                                                                                                                                      Equations
                                                                                                                                                                      • One or more equations did not get rendered due to their size.
                                                                                                                                                                      Instances For
                                                                                                                                                                        def Equiv.prodSubtypeFstEquivSubtypeProd {α : Type u_9} {β : Type u_10} {p : αProp} :
                                                                                                                                                                        { s : α × β // p s.1 } { a : α // p a } × β

                                                                                                                                                                        A subtype of a Prod that depends only on the first component is equivalent to the corresponding subtype of the first type times the second type.

                                                                                                                                                                        Equations
                                                                                                                                                                        • One or more equations did not get rendered due to their size.
                                                                                                                                                                        Instances For
                                                                                                                                                                          def Equiv.subtypeProdEquivSigmaSubtype {α : Type u_9} {β : Type u_10} (p : αβProp) :
                                                                                                                                                                          { x : α × β // p x.1 x.2 } (a : α) × { b : β // p a b }

                                                                                                                                                                          A subtype of a Prod is equivalent to a sigma type whose fibers are subtypes.

                                                                                                                                                                          Equations
                                                                                                                                                                          • One or more equations did not get rendered due to their size.
                                                                                                                                                                          Instances For
                                                                                                                                                                            def Equiv.piEquivPiSubtypeProd {α : Type u_9} (p : αProp) (β : αType u_10) [DecidablePred p] :
                                                                                                                                                                            ((i : α) → β i) ((i : { x : α // p x }) → β i) × ((i : { x : α // ¬p x }) → β i)

                                                                                                                                                                            The type ∀ (i : α), β i can be split as a product by separating the indices in α depending on whether they satisfy a predicate p or not.

                                                                                                                                                                            Equations
                                                                                                                                                                            • One or more equations did not get rendered due to their size.
                                                                                                                                                                            Instances For
                                                                                                                                                                              @[simp]
                                                                                                                                                                              theorem Equiv.piEquivPiSubtypeProd_symm_apply {α : Type u_9} (p : αProp) (β : αType u_10) [DecidablePred p] (f : ((i : { x : α // p x }) → β i) × ((i : { x : α // ¬p x }) → β i)) (x : α) :
                                                                                                                                                                              (piEquivPiSubtypeProd p β).symm f x = if h : p x then f.1 x, h else f.2 x, h
                                                                                                                                                                              @[simp]
                                                                                                                                                                              theorem Equiv.piEquivPiSubtypeProd_apply {α : Type u_9} (p : αProp) (β : αType u_10) [DecidablePred p] (f : (i : α) → β i) :
                                                                                                                                                                              (piEquivPiSubtypeProd p β) f = (fun (x : { x : α // p x }) => f x, fun (x : { x : α // ¬p x }) => f x)
                                                                                                                                                                              def Equiv.piSplitAt {α : Type u_9} [DecidableEq α] (i : α) (β : αType u_10) :
                                                                                                                                                                              ((j : α) → β j) β i × ((j : { j : α // j i }) → β j)

                                                                                                                                                                              A product of types can be split as the binary product of one of the types and the product of all the remaining types.

                                                                                                                                                                              Equations
                                                                                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                                                                                              Instances For
                                                                                                                                                                                @[simp]
                                                                                                                                                                                theorem Equiv.piSplitAt_apply {α : Type u_9} [DecidableEq α] (i : α) (β : αType u_10) (f : (j : α) → β j) :
                                                                                                                                                                                (piSplitAt i β) f = (f i, fun (j : { j : α // j i }) => f j)
                                                                                                                                                                                @[simp]
                                                                                                                                                                                theorem Equiv.piSplitAt_symm_apply {α : Type u_9} [DecidableEq α] (i : α) (β : αType u_10) (f : β i × ((j : { j : α // j i }) → β j)) (j : α) :
                                                                                                                                                                                (piSplitAt i β).symm f j = if h : j = i then f.1 else f.2 j, h
                                                                                                                                                                                def Equiv.funSplitAt {α : Type u_9} [DecidableEq α] (i : α) (β : Type u_10) :
                                                                                                                                                                                (αβ) β × ({ j : α // j i }β)

                                                                                                                                                                                A product of copies of a type can be split as the binary product of one copy and the product of all the remaining copies.

                                                                                                                                                                                Equations
                                                                                                                                                                                Instances For
                                                                                                                                                                                  @[simp]
                                                                                                                                                                                  theorem Equiv.funSplitAt_symm_apply {α : Type u_9} [DecidableEq α] (i : α) (β : Type u_10) (f : (fun (a : α) => β) i × ((j : { j : α // j i }) → (fun (a : α) => β) j)) (j : α) :
                                                                                                                                                                                  (funSplitAt i β).symm f j = if h : j = i then f.1 else f.2 j,
                                                                                                                                                                                  @[simp]
                                                                                                                                                                                  theorem Equiv.funSplitAt_apply {α : Type u_9} [DecidableEq α] (i : α) (β : Type u_10) (f : (j : α) → (fun (a : α) => β) j) :
                                                                                                                                                                                  (funSplitAt i β) f = (f i, fun (j : { j : α // ¬j = i }) => f j)
                                                                                                                                                                                  def Equiv.subtypeEquivCodomain {X : Sort u_9} {Y : Sort u_10} [DecidableEq X] {x : X} (f : { x' : X // x' x }Y) :
                                                                                                                                                                                  { g : XY // g Subtype.val = f } Y

                                                                                                                                                                                  The type of all functions X → Y with prescribed values for all x' ≠ x is equivalent to the codomain Y.

                                                                                                                                                                                  Equations
                                                                                                                                                                                  Instances For
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem Equiv.coe_subtypeEquivCodomain {X : Sort u_9} {Y : Sort u_10} [DecidableEq X] {x : X} (f : { x' : X // x' x }Y) :
                                                                                                                                                                                    (subtypeEquivCodomain f) = fun (g : { g : XY // g Subtype.val = f }) => g x
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem Equiv.subtypeEquivCodomain_apply {X : Sort u_9} {Y : Sort u_10} [DecidableEq X] {x : X} (f : { x' : X // x' x }Y) (g : { g : XY // g Subtype.val = f }) :
                                                                                                                                                                                    (subtypeEquivCodomain f) g = g x
                                                                                                                                                                                    theorem Equiv.coe_subtypeEquivCodomain_symm {X : Sort u_9} {Y : Sort u_10} [DecidableEq X] {x : X} (f : { x' : X // x' x }Y) :
                                                                                                                                                                                    (subtypeEquivCodomain f).symm = fun (y : Y) => fun (x' : X) => if h : x' x then f x', h else y,
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem Equiv.subtypeEquivCodomain_symm_apply {X : Sort u_9} {Y : Sort u_10} [DecidableEq X] {x : X} (f : { x' : X // x' x }Y) (y : Y) (x' : X) :
                                                                                                                                                                                    ((subtypeEquivCodomain f).symm y) x' = if h : x' x then f x', h else y
                                                                                                                                                                                    theorem Equiv.subtypeEquivCodomain_symm_apply_eq {X : Sort u_9} {Y : Sort u_10} [DecidableEq X] {x : X} (f : { x' : X // x' x }Y) (y : Y) :
                                                                                                                                                                                    ((subtypeEquivCodomain f).symm y) x = y
                                                                                                                                                                                    theorem Equiv.subtypeEquivCodomain_symm_apply_ne {X : Sort u_9} {Y : Sort u_10} [DecidableEq X] {x : X} (f : { x' : X // x' x }Y) (y : Y) (x' : X) (h : x' x) :
                                                                                                                                                                                    ((subtypeEquivCodomain f).symm y) x' = f x', h
                                                                                                                                                                                    def Equiv.Perm.extendDomain {α' : Type u_9} {β' : Type u_10} (e : Perm α') {p : β'Prop} [DecidablePred p] (f : α' Subtype p) :
                                                                                                                                                                                    Perm β'

                                                                                                                                                                                    Extend the domain of e : Equiv.Perm α to one that is over β via f : α → Subtype p, where p : β → Prop, permuting only the b : β that satisfy p b. This can be used to extend the domain across a function f : α → β, keeping everything outside of Set.range f fixed. For this use-case Equiv given by f can be constructed by Equiv.of_leftInverse' or Equiv.of_leftInverse when there is a known inverse, or Equiv.ofInjective in the general case.

                                                                                                                                                                                    Equations
                                                                                                                                                                                    • e.extendDomain f = (f.permCongr e).subtypeCongr (Equiv.refl { a : β' // ¬p a })
                                                                                                                                                                                    Instances For
                                                                                                                                                                                      @[simp]
                                                                                                                                                                                      theorem Equiv.Perm.extendDomain_apply_image {α' : Type u_9} {β' : Type u_10} (e : Perm α') {p : β'Prop} [DecidablePred p] (f : α' Subtype p) (a : α') :
                                                                                                                                                                                      (e.extendDomain f) (f a) = (f (e a))
                                                                                                                                                                                      theorem Equiv.Perm.extendDomain_apply_subtype {α' : Type u_9} {β' : Type u_10} (e : Perm α') {p : β'Prop} [DecidablePred p] (f : α' Subtype p) {b : β'} (h : p b) :
                                                                                                                                                                                      (e.extendDomain f) b = (f (e (f.symm b, h)))
                                                                                                                                                                                      theorem Equiv.Perm.extendDomain_apply_not_subtype {α' : Type u_9} {β' : Type u_10} (e : Perm α') {p : β'Prop} [DecidablePred p] (f : α' Subtype p) {b : β'} (h : ¬p b) :
                                                                                                                                                                                      (e.extendDomain f) b = b
                                                                                                                                                                                      @[simp]
                                                                                                                                                                                      theorem Equiv.Perm.extendDomain_refl {α' : Type u_9} {β' : Type u_10} {p : β'Prop} [DecidablePred p] (f : α' Subtype p) :
                                                                                                                                                                                      @[simp]
                                                                                                                                                                                      theorem Equiv.Perm.extendDomain_symm {α' : Type u_9} {β' : Type u_10} (e : Perm α') {p : β'Prop} [DecidablePred p] (f : α' Subtype p) :
                                                                                                                                                                                      Equiv.symm (e.extendDomain f) = extendDomain (Equiv.symm e) f
                                                                                                                                                                                      theorem Equiv.Perm.extendDomain_trans {α' : Type u_9} {β' : Type u_10} {p : β'Prop} [DecidablePred p] (f : α' Subtype p) (e e' : Perm α') :
                                                                                                                                                                                      Equiv.trans (e.extendDomain f) (e'.extendDomain f) = extendDomain (Equiv.trans e e') f
                                                                                                                                                                                      def Equiv.subtypeQuotientEquivQuotientSubtype {α : Sort u_1} (p₁ : αProp) {s₁ : Setoid α} {s₂ : Setoid (Subtype p₁)} (p₂ : Quotient s₁Prop) (hp₂ : ∀ (a : α), p₁ a p₂ a) (h : ∀ (x y : Subtype p₁), s₂ x y s₁ x y) :
                                                                                                                                                                                      { x : Quotient s₁ // p₂ x } Quotient s₂

                                                                                                                                                                                      Subtype of the quotient is equivalent to the quotient of the subtype. Let α be a setoid with equivalence relation ~. Let p₂ be a predicate on the quotient type α/~, and p₁ be the lift of this predicate to α: p₁ a ↔ p₂ ⟦a⟧. Let ~₂ be the restriction of ~ to {x // p₁ x}. Then {x // p₂ x} is equivalent to the quotient of {x // p₁ x} by ~₂.

                                                                                                                                                                                      Equations
                                                                                                                                                                                      • One or more equations did not get rendered due to their size.
                                                                                                                                                                                      Instances For
                                                                                                                                                                                        @[simp]
                                                                                                                                                                                        theorem Equiv.subtypeQuotientEquivQuotientSubtype_mk {α : Sort u_1} (p₁ : αProp) [s₁ : Setoid α] [s₂ : Setoid (Subtype p₁)] (p₂ : Quotient s₁Prop) (hp₂ : ∀ (a : α), p₁ a p₂ a) (h : ∀ (x y : Subtype p₁), s₂ x y x y) (x : α) (hx : p₂ x) :
                                                                                                                                                                                        (subtypeQuotientEquivQuotientSubtype p₁ p₂ hp₂ h) x, hx = x,
                                                                                                                                                                                        @[simp]
                                                                                                                                                                                        theorem Equiv.subtypeQuotientEquivQuotientSubtype_symm_mk {α : Sort u_1} (p₁ : αProp) [s₁ : Setoid α] [s₂ : Setoid (Subtype p₁)] (p₂ : Quotient s₁Prop) (hp₂ : ∀ (a : α), p₁ a p₂ a) (h : ∀ (x y : Subtype p₁), s₂ x y x y) (x : Subtype p₁) :
                                                                                                                                                                                        (subtypeQuotientEquivQuotientSubtype p₁ p₂ hp₂ h).symm x = x,
                                                                                                                                                                                        def Equiv.swapCore {α : Sort u_1} [DecidableEq α] (a b r : α) :
                                                                                                                                                                                        α

                                                                                                                                                                                        A helper function for Equiv.swap.

                                                                                                                                                                                        Equations
                                                                                                                                                                                        Instances For
                                                                                                                                                                                          theorem Equiv.swapCore_self {α : Sort u_1} [DecidableEq α] (r a : α) :
                                                                                                                                                                                          swapCore a a r = r
                                                                                                                                                                                          theorem Equiv.swapCore_swapCore {α : Sort u_1} [DecidableEq α] (r a b : α) :
                                                                                                                                                                                          swapCore a b (swapCore a b r) = r
                                                                                                                                                                                          theorem Equiv.swapCore_comm {α : Sort u_1} [DecidableEq α] (r a b : α) :
                                                                                                                                                                                          swapCore a b r = swapCore b a r
                                                                                                                                                                                          def Equiv.swap {α : Sort u_1} [DecidableEq α] (a b : α) :
                                                                                                                                                                                          Perm α

                                                                                                                                                                                          swap a b is the permutation that swaps a and b and leaves other values as is.

                                                                                                                                                                                          Equations
                                                                                                                                                                                          Instances For
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.swap_self {α : Sort u_1} [DecidableEq α] (a : α) :
                                                                                                                                                                                            theorem Equiv.swap_comm {α : Sort u_1} [DecidableEq α] (a b : α) :
                                                                                                                                                                                            swap a b = swap b a
                                                                                                                                                                                            theorem Equiv.swap_apply_def {α : Sort u_1} [DecidableEq α] (a b x : α) :
                                                                                                                                                                                            (swap a b) x = if x = a then b else if x = b then a else x
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.swap_apply_left {α : Sort u_1} [DecidableEq α] (a b : α) :
                                                                                                                                                                                            (swap a b) a = b
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.swap_apply_right {α : Sort u_1} [DecidableEq α] (a b : α) :
                                                                                                                                                                                            (swap a b) b = a
                                                                                                                                                                                            theorem Equiv.swap_apply_of_ne_of_ne {α : Sort u_1} [DecidableEq α] {a b x : α} :
                                                                                                                                                                                            x ax b(swap a b) x = x
                                                                                                                                                                                            theorem Equiv.eq_or_eq_of_swap_apply_ne_self {α : Sort u_1} [DecidableEq α] {a b x : α} (h : (swap a b) x x) :
                                                                                                                                                                                            x = a x = b
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.swap_swap {α : Sort u_1} [DecidableEq α] (a b : α) :
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.symm_swap {α : Sort u_1} [DecidableEq α] (a b : α) :
                                                                                                                                                                                            Equiv.symm (swap a b) = swap a b
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.swap_eq_refl_iff {α : Sort u_1} [DecidableEq α] {x y : α} :
                                                                                                                                                                                            swap x y = Equiv.refl α x = y
                                                                                                                                                                                            theorem Equiv.swap_comp_apply {α : Sort u_1} [DecidableEq α] {a b x : α} (π : Perm α) :
                                                                                                                                                                                            (Equiv.trans π (swap a b)) x = if π x = a then b else if π x = b then a else π x
                                                                                                                                                                                            theorem Equiv.swap_eq_update {α : Sort u_1} [DecidableEq α] (i j : α) :
                                                                                                                                                                                            theorem Equiv.comp_swap_eq_update {α : Sort u_1} {β : Sort u_4} [DecidableEq α] (i j : α) (f : αβ) :
                                                                                                                                                                                            f (swap i j) = Function.update (Function.update f j (f i)) i (f j)
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.symm_trans_swap_trans {α : Sort u_1} {β : Sort u_4} [DecidableEq α] [DecidableEq β] (a b : α) (e : α β) :
                                                                                                                                                                                            (e.symm.trans (swap a b)).trans e = swap (e a) (e b)
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.trans_swap_trans_symm {α : Sort u_1} {β : Sort u_4} [DecidableEq α] [DecidableEq β] (a b : β) (e : α β) :
                                                                                                                                                                                            (e.trans (swap a b)).trans e.symm = swap (e.symm a) (e.symm b)
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.swap_apply_self {α : Sort u_1} [DecidableEq α] (i j a : α) :
                                                                                                                                                                                            (swap i j) ((swap i j) a) = a
                                                                                                                                                                                            theorem Equiv.apply_swap_eq_self {α : Sort u_1} {β : Sort u_4} [DecidableEq α] {v : αβ} {i j : α} (hv : v i = v j) (k : α) :
                                                                                                                                                                                            v ((swap i j) k) = v k

                                                                                                                                                                                            A function is invariant to a swap if it is equal at both elements

                                                                                                                                                                                            theorem Equiv.swap_apply_eq_iff {α : Sort u_1} [DecidableEq α] {x y z w : α} :
                                                                                                                                                                                            (swap x y) z = w z = (swap x y) w
                                                                                                                                                                                            theorem Equiv.swap_apply_ne_self_iff {α : Sort u_1} [DecidableEq α] {a b x : α} :
                                                                                                                                                                                            (swap a b) x x a b (x = a x = b)
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.Perm.sumCongr_swap_refl {α : Type u_9} {β : Type u_10} [DecidableEq α] [DecidableEq β] (i j : α) :
                                                                                                                                                                                            (swap i j).sumCongr (Equiv.refl β) = swap (Sum.inl i) (Sum.inl j)
                                                                                                                                                                                            @[simp]
                                                                                                                                                                                            theorem Equiv.Perm.sumCongr_refl_swap {α : Type u_9} {β : Type u_10} [DecidableEq α] [DecidableEq β] (i j : β) :
                                                                                                                                                                                            def Equiv.setValue {α : Sort u_1} {β : Sort u_4} [DecidableEq α] (f : α β) (a : α) (b : β) :
                                                                                                                                                                                            α β

                                                                                                                                                                                            Augment an equivalence with a prescribed mapping f a = b

                                                                                                                                                                                            Equations
                                                                                                                                                                                            Instances For
                                                                                                                                                                                              @[simp]
                                                                                                                                                                                              theorem Equiv.setValue_eq {α : Sort u_1} {β : Sort u_4} [DecidableEq α] (f : α β) (a : α) (b : β) :
                                                                                                                                                                                              (f.setValue a b) a = b
                                                                                                                                                                                              def Function.Involutive.toPerm {α : Sort u_1} (f : αα) (h : Involutive f) :

                                                                                                                                                                                              Convert an involutive function f to a permutation with toFun = invFun = f.

                                                                                                                                                                                              Equations
                                                                                                                                                                                              Instances For
                                                                                                                                                                                                @[simp]
                                                                                                                                                                                                theorem Function.Involutive.coe_toPerm {α : Sort u_1} {f : αα} (h : Involutive f) :
                                                                                                                                                                                                (toPerm f h) = f
                                                                                                                                                                                                @[simp]
                                                                                                                                                                                                theorem Function.Involutive.toPerm_symm {α : Sort u_1} {f : αα} (h : Involutive f) :
                                                                                                                                                                                                theorem Function.Involutive.toPerm_involutive {α : Sort u_1} {f : αα} (h : Involutive f) :
                                                                                                                                                                                                theorem PLift.eq_up_iff_down_eq {α : Sort u_1} {x : PLift α} {y : α} :
                                                                                                                                                                                                x = { down := y } x.down = y
                                                                                                                                                                                                theorem Function.Injective.map_swap {α : Sort u_1} {β : Sort u_4} [DecidableEq α] [DecidableEq β] {f : αβ} (hf : Injective f) (x y z : α) :
                                                                                                                                                                                                f ((Equiv.swap x y) z) = (Equiv.swap (f x) (f y)) (f z)
                                                                                                                                                                                                def Equiv.piCongrLeft' {α : Sort u_1} {β : Sort u_4} (P : αSort u_9) (e : α β) :
                                                                                                                                                                                                ((a : α) → P a) ((b : β) → P (e.symm b))

                                                                                                                                                                                                Transport dependent functions through an equivalence of the base space.

                                                                                                                                                                                                Equations
                                                                                                                                                                                                • Equiv.piCongrLeft' P e = { toFun := fun (f : (a : α) → P a) (x : β) => f (e.symm x), invFun := fun (f : (b : β) → P (e.symm b)) (x : α) => f (e x), left_inv := , right_inv := }
                                                                                                                                                                                                Instances For
                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem Equiv.piCongrLeft'_apply {α : Sort u_1} {β : Sort u_4} (P : αSort u_9) (e : α β) (f : (a : α) → P a) (x : β) :
                                                                                                                                                                                                  (piCongrLeft' P e) f x = f (e.symm x)
                                                                                                                                                                                                  theorem Equiv.piCongrLeft'_symm_apply {α : Sort u_1} {β : Sort u_4} (P : αSort u_9) (e : α β) (f : (b : β) → P (e.symm b)) (x : α) :
                                                                                                                                                                                                  (piCongrLeft' P e).symm f x = f (e x)

                                                                                                                                                                                                  Note: the "obvious" statement (piCongrLeft' P e).symm g a = g (e a) doesn't typecheck: the LHS would have type P a while the RHS would have type P (e.symm (e a)). For that reason, we have to explicitly substitute along e.symm (e a) = a in the statement of this lemma.

                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem Equiv.piCongrLeft'_symm {α : Sort u_1} {β : Sort u_4} (P : Sort u_9) (e : α β) :
                                                                                                                                                                                                  (piCongrLeft' (fun (x : α) => P) e).symm = piCongrLeft' (fun (a : β) => P) e.symm

                                                                                                                                                                                                  This lemma is impractical to state in the dependent case.

                                                                                                                                                                                                  @[simp]
                                                                                                                                                                                                  theorem Equiv.piCongrLeft'_symm_apply_apply {α : Sort u_1} {β : Sort u_4} (P : αSort u_9) (e : α β) (g : (b : β) → P (e.symm b)) (b : β) :
                                                                                                                                                                                                  (piCongrLeft' P e).symm g (e.symm b) = g b

                                                                                                                                                                                                  Note: the "obvious" statement (piCongrLeft' P e).symm g a = g (e a) doesn't typecheck: the LHS would have type P a while the RHS would have type P (e.symm (e a)). This lemma is a way around it in the case where a is of the form e.symm b, so we can use g b instead of g (e (e.symm b)).

                                                                                                                                                                                                  def Equiv.piCongrLeft {α : Sort u_1} {β : Sort u_4} (P : βSort w) (e : α β) :
                                                                                                                                                                                                  ((a : α) → P (e a)) ((b : β) → P b)

                                                                                                                                                                                                  Transporting dependent functions through an equivalence of the base, expressed as a "simplification".

                                                                                                                                                                                                  Equations
                                                                                                                                                                                                  Instances For
                                                                                                                                                                                                    @[simp]
                                                                                                                                                                                                    theorem Equiv.piCongrLeft_apply {α : Sort u_1} {β : Sort u_4} (P : βSort w) (e : α β) (f : (a : α) → P (e a)) (b : β) :
                                                                                                                                                                                                    (piCongrLeft P e) f b = f (e.symm b)

                                                                                                                                                                                                    Note: the "obvious" statement (piCongrLeft P e) f b = f (e.symm b) doesn't typecheck: the LHS would have type P b while the RHS would have type P (e (e.symm b)). For that reason, we have to explicitly substitute along e (e.symm b) = b in the statement of this lemma.

                                                                                                                                                                                                    @[simp]
                                                                                                                                                                                                    theorem Equiv.piCongrLeft_symm_apply {α : Sort u_1} {β : Sort u_4} (P : βSort w) (e : α β) (g : (b : β) → P b) (a : α) :
                                                                                                                                                                                                    (piCongrLeft P e).symm g a = g (e a)
                                                                                                                                                                                                    theorem Equiv.piCongrLeft_apply_apply {α : Sort u_1} {β : Sort u_4} (P : βSort w) (e : α β) (f : (a : α) → P (e a)) (a : α) :
                                                                                                                                                                                                    (piCongrLeft P e) f (e a) = f a

                                                                                                                                                                                                    Note: the "obvious" statement (piCongrLeft P e) f b = f (e.symm b) doesn't typecheck: the LHS would have type P b while the RHS would have type P (e (e.symm b)). This lemma is a way around it in the case where b is of the form e a, so we can use f a instead of f (e.symm (e a)).

                                                                                                                                                                                                    theorem Equiv.piCongrLeft_apply_eq_cast {α : Sort u_1} {β : Sort u_4} {P : βSort v} {e : α β} (f : (a : α) → P (e a)) (b : β) :
                                                                                                                                                                                                    (piCongrLeft P e) f b = cast (f (e.symm b))
                                                                                                                                                                                                    theorem Equiv.piCongrLeft_sum_inl {ι : Type u_10} {ι' : Type u_11} {ι'' : Sort u_12} (π : ι''Type u_9) (e : ι ι' ι'') (f : (i : ι) → π (e (Sum.inl i))) (g : (i : ι') → π (e (Sum.inr i))) (i : ι) :
                                                                                                                                                                                                    (piCongrLeft π e) ((sumPiEquivProdPi fun (x : ι ι') => π (e x)).symm (f, g)) (e (Sum.inl i)) = f i
                                                                                                                                                                                                    theorem Equiv.piCongrLeft_sum_inr {ι : Type u_10} {ι' : Type u_11} {ι'' : Sort u_12} (π : ι''Type u_9) (e : ι ι' ι'') (f : (i : ι) → π (e (Sum.inl i))) (g : (i : ι') → π (e (Sum.inr i))) (j : ι') :
                                                                                                                                                                                                    (piCongrLeft π e) ((sumPiEquivProdPi fun (x : ι ι') => π (e x)).symm (f, g)) (e (Sum.inr j)) = g j
                                                                                                                                                                                                    def Equiv.piCongr {α : Sort u_1} {β : Sort u_4} {W : αSort w} {Z : βSort z} (h₁ : α β) (h₂ : (a : α) → W a Z (h₁ a)) :
                                                                                                                                                                                                    ((a : α) → W a) ((b : β) → Z b)

                                                                                                                                                                                                    Transport dependent functions through an equivalence of the base spaces and a family of equivalences of the matching fibers.

                                                                                                                                                                                                    Equations
                                                                                                                                                                                                    Instances For
                                                                                                                                                                                                      @[simp]
                                                                                                                                                                                                      theorem Equiv.coe_piCongr_symm {α : Sort u_1} {β : Sort u_4} {W : αSort w} {Z : βSort z} (h₁ : α β) (h₂ : (a : α) → W a Z (h₁ a)) :
                                                                                                                                                                                                      (h₁.piCongr h₂).symm = fun (f : (b : β) → Z b) (a : α) => (h₂ a).symm (f (h₁ a))
                                                                                                                                                                                                      theorem Equiv.piCongr_symm_apply {α : Sort u_1} {β : Sort u_4} {W : αSort w} {Z : βSort z} (h₁ : α β) (h₂ : (a : α) → W a Z (h₁ a)) (f : (b : β) → Z b) :
                                                                                                                                                                                                      (h₁.piCongr h₂).symm f = fun (a : α) => (h₂ a).symm (f (h₁ a))
                                                                                                                                                                                                      @[simp]
                                                                                                                                                                                                      theorem Equiv.piCongr_apply_apply {α : Sort u_1} {β : Sort u_4} {W : αSort w} {Z : βSort z} (h₁ : α β) (h₂ : (a : α) → W a Z (h₁ a)) (f : (a : α) → W a) (a : α) :
                                                                                                                                                                                                      (h₁.piCongr h₂) f (h₁ a) = (h₂ a) (f a)
                                                                                                                                                                                                      def Equiv.piCongr' {α : Sort u_1} {β : Sort u_4} {W : αSort w} {Z : βSort z} (h₁ : α β) (h₂ : (b : β) → W (h₁.symm b) Z b) :
                                                                                                                                                                                                      ((a : α) → W a) ((b : β) → Z b)

                                                                                                                                                                                                      Transport dependent functions through an equivalence of the base spaces and a family of equivalences of the matching fibres.

                                                                                                                                                                                                      Equations
                                                                                                                                                                                                      • h₁.piCongr' h₂ = (h₁.symm.piCongr fun (b : β) => (h₂ b).symm).symm
                                                                                                                                                                                                      Instances For
                                                                                                                                                                                                        @[simp]
                                                                                                                                                                                                        theorem Equiv.coe_piCongr' {α : Sort u_1} {β : Sort u_4} {W : αSort w} {Z : βSort z} (h₁ : α β) (h₂ : (b : β) → W (h₁.symm b) Z b) :
                                                                                                                                                                                                        (h₁.piCongr' h₂) = fun (f : (a : α) → W a) (b : β) => (h₂ b) (f (h₁.symm b))
                                                                                                                                                                                                        theorem Equiv.piCongr'_apply {α : Sort u_1} {β : Sort u_4} {W : αSort w} {Z : βSort z} (h₁ : α β) (h₂ : (b : β) → W (h₁.symm b) Z b) (f : (a : α) → W a) :
                                                                                                                                                                                                        (h₁.piCongr' h₂) f = fun (b : β) => (h₂ b) (f (h₁.symm b))
                                                                                                                                                                                                        @[simp]
                                                                                                                                                                                                        theorem Equiv.piCongr'_symm_apply_symm_apply {α : Sort u_1} {β : Sort u_4} {W : αSort w} {Z : βSort z} (h₁ : α β) (h₂ : (b : β) → W (h₁.symm b) Z b) (f : (b : β) → Z b) (b : β) :
                                                                                                                                                                                                        (h₁.piCongr' h₂).symm f (h₁.symm b) = (h₂ b).symm (f b)
                                                                                                                                                                                                        def Equiv.piCongrSet {α : Type u_9} {W : αSort w} {s t : Set α} (h : s = t) :
                                                                                                                                                                                                        ((i : { i : α // i s }) → W i) ((i : { i : α // i t }) → W i)

                                                                                                                                                                                                        Transport dependent functions through an equality of sets.

                                                                                                                                                                                                        Equations
                                                                                                                                                                                                        • One or more equations did not get rendered due to their size.
                                                                                                                                                                                                        Instances For
                                                                                                                                                                                                          @[simp]
                                                                                                                                                                                                          theorem Equiv.piCongrSet_apply {α : Type u_9} {W : αSort w} {s t : Set α} (h : s = t) (f : (i : { i : α // i s }) → W i) (i : { i : α // i t }) :
                                                                                                                                                                                                          (piCongrSet h) f i = f i,
                                                                                                                                                                                                          @[simp]
                                                                                                                                                                                                          theorem Equiv.piCongrSet_symm_apply {α : Type u_9} {W : αSort w} {s t : Set α} (h : s = t) (f : (i : { i : α // i t }) → W i) (i : { i : α // i s }) :
                                                                                                                                                                                                          (piCongrSet h).symm f i = f i,
                                                                                                                                                                                                          theorem Equiv.semiconj_conj {α₁ : Type u_9} {β₁ : Type u_10} (e : α₁ β₁) (f : α₁α₁) :
                                                                                                                                                                                                          Function.Semiconj (⇑e) f (e.conj f)
                                                                                                                                                                                                          theorem Equiv.semiconj₂_conj {α₁ : Type u_9} {β₁ : Type u_10} (e : α₁ β₁) (f : α₁α₁α₁) :
                                                                                                                                                                                                          Function.Semiconj₂ (⇑e) f ((e.arrowCongr e.conj) f)
                                                                                                                                                                                                          instance Equiv.instAssociativeCoeForallForallArrowCongr {α₁ : Type u_9} {β₁ : Type u_10} (e : α₁ β₁) (f : α₁α₁α₁) [Std.Associative f] :
                                                                                                                                                                                                          Std.Associative ((e.arrowCongr (e.arrowCongr e)) f)
                                                                                                                                                                                                          instance Equiv.instIdempotentOpCoeForallForallArrowCongr {α₁ : Type u_9} {β₁ : Type u_10} (e : α₁ β₁) (f : α₁α₁α₁) [Std.IdempotentOp f] :
                                                                                                                                                                                                          Std.IdempotentOp ((e.arrowCongr (e.arrowCongr e)) f)
                                                                                                                                                                                                          @[simp]
                                                                                                                                                                                                          theorem Equiv.ulift_symm_down {α : Type v} (x : α) :
                                                                                                                                                                                                          (Equiv.ulift.symm x).down = x
                                                                                                                                                                                                          theorem Function.Injective.swap_apply {α : Sort u_1} {β : Sort u_4} [DecidableEq α] [DecidableEq β] {f : αβ} (hf : Injective f) (x y z : α) :
                                                                                                                                                                                                          (Equiv.swap (f x) (f y)) (f z) = f ((Equiv.swap x y) z)
                                                                                                                                                                                                          theorem Function.Injective.swap_comp {α : Sort u_1} {β : Sort u_4} [DecidableEq α] [DecidableEq β] {f : αβ} (hf : Injective f) (x y : α) :
                                                                                                                                                                                                          (Equiv.swap (f x) (f y)) f = f (Equiv.swap x y)
                                                                                                                                                                                                          def subsingletonProdSelfEquiv {α : Type u_9} [Subsingleton α] :
                                                                                                                                                                                                          α × α α

                                                                                                                                                                                                          If α is a subsingleton, then it is equivalent to α × α.

                                                                                                                                                                                                          Equations
                                                                                                                                                                                                          Instances For
                                                                                                                                                                                                            def equivOfSubsingletonOfSubsingleton {α : Sort u_1} {β : Sort u_4} [Subsingleton α] [Subsingleton β] (f : αβ) (g : βα) :
                                                                                                                                                                                                            α β

                                                                                                                                                                                                            To give an equivalence between two subsingleton types, it is sufficient to give any two functions between them.

                                                                                                                                                                                                            Equations
                                                                                                                                                                                                            Instances For
                                                                                                                                                                                                              noncomputable def Equiv.punitOfNonemptyOfSubsingleton {α : Sort u_1} [h : Nonempty α] [Subsingleton α] :

                                                                                                                                                                                                              A nonempty subsingleton type is (noncomputably) equivalent to PUnit.

                                                                                                                                                                                                              Equations
                                                                                                                                                                                                              Instances For
                                                                                                                                                                                                                def uniqueUniqueEquiv {α : Sort u_1} :

                                                                                                                                                                                                                Unique (Unique α) is equivalent to Unique α.

                                                                                                                                                                                                                Equations
                                                                                                                                                                                                                Instances For
                                                                                                                                                                                                                  def uniqueEquivEquivUnique (α : Sort u) (β : Sort v) [Unique β] :
                                                                                                                                                                                                                  Unique α (α β)

                                                                                                                                                                                                                  If Unique β, then Unique α is equivalent to α ≃ β.

                                                                                                                                                                                                                  Equations
                                                                                                                                                                                                                  Instances For
                                                                                                                                                                                                                    theorem Function.update_comp_equiv {α : Sort u_1} {β : Sort u_4} {α' : Sort u_9} [DecidableEq α'] [DecidableEq α] (f : αβ) (g : α' α) (a : α) (v : β) :
                                                                                                                                                                                                                    update f a v g = update (f g) (g.symm a) v
                                                                                                                                                                                                                    theorem Function.update_apply_equiv_apply {α : Sort u_1} {β : Sort u_4} {α' : Sort u_9} [DecidableEq α'] [DecidableEq α] (f : αβ) (g : α' α) (a : α) (v : β) (a' : α') :
                                                                                                                                                                                                                    update f a v (g a') = update (f g) (g.symm a) v a'
                                                                                                                                                                                                                    theorem Function.piCongrLeft'_update {α : Sort u_1} {β : Sort u_4} [DecidableEq α] [DecidableEq β] (P : αSort u_10) (e : α β) (f : (a : α) → P a) (b : β) (x : P (e.symm b)) :
                                                                                                                                                                                                                    (Equiv.piCongrLeft' P e) (update f (e.symm b) x) = update ((Equiv.piCongrLeft' P e) f) b x
                                                                                                                                                                                                                    theorem Function.piCongrLeft'_symm_update {α : Sort u_1} {β : Sort u_4} [DecidableEq α] [DecidableEq β] (P : αSort u_10) (e : α β) (f : (b : β) → P (e.symm b)) (b : β) (x : P (e.symm b)) :
                                                                                                                                                                                                                    (Equiv.piCongrLeft' P e).symm (update f b x) = update ((Equiv.piCongrLeft' P e).symm f) (e.symm b) x