Documentation

Mathlib.MeasureTheory.Function.LpSpace

Lp space #

This file provides the space Lp E p μ as the subtype of elements of α →ₘ[μ] E (see ae_eq_fun) such that eLpNorm f p μ is finite. For 1 ≤ p, eLpNorm defines a norm and Lp is a complete metric space.

Main definitions #

Lipschitz functions vanishing at zero act by composition on Lp. We define this action, and prove that it is continuous. In particular,

When α is a topological space equipped with a finite Borel measure, there is a bounded linear map from the normed space of bounded continuous functions (α →ᵇ E) to Lp E p μ. We construct this as BoundedContinuousFunction.toLp.

Notations #

Implementation #

Since Lp is defined as an AddSubgroup, dot notation does not work. Use Lp.Measurable f to say that the coercion of f to a genuine function is measurable, instead of the non-working f.Measurable.

To prove that two Lp elements are equal, it suffices to show that their coercions to functions coincide almost everywhere (this is registered as an ext rule). This can often be done using filter_upwards. For instance, a proof from first principles that f + (g + h) = (f + g) + h could read (in the Lp namespace)

example (f g h : Lp E p μ) : (f + g) + h = f + (g + h) := by
  ext1
  filter_upwards [coeFn_add (f + g) h, coeFn_add f g, coeFn_add f (g + h), coeFn_add g h]
    with _ ha1 ha2 ha3 ha4
  simp only [ha1, ha2, ha3, ha4, add_assoc]

The lemma coeFn_add states that the coercion of f + g coincides almost everywhere with the sum of the coercions of f and g. All such lemmas use coeFn in their name, to distinguish the function coercion from the coercion to almost everywhere defined functions.

Lp space #

The space of equivalence classes of measurable functions for which eLpNorm f p μ < ∞.

@[simp]
theorem MeasureTheory.eLpNorm_aeeqFun {α : Type u_5} {E : Type u_6} [MeasurableSpace α] {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} {f : αE} (hf : AEStronglyMeasurable f μ) :
eLpNorm (↑(AEEqFun.mk f hf)) p μ = eLpNorm f p μ
@[deprecated MeasureTheory.eLpNorm_aeeqFun (since := "2024-07-27")]
theorem MeasureTheory.snorm_aeeqFun {α : Type u_5} {E : Type u_6} [MeasurableSpace α] {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} {f : αE} (hf : AEStronglyMeasurable f μ) :
eLpNorm (↑(AEEqFun.mk f hf)) p μ = eLpNorm f p μ

Alias of MeasureTheory.eLpNorm_aeeqFun.

theorem MeasureTheory.Memℒp.eLpNorm_mk_lt_top {α : Type u_5} {E : Type u_6} [MeasurableSpace α] {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} {f : αE} (hfp : Memℒp f p μ) :
eLpNorm (↑(AEEqFun.mk f )) p μ <
@[deprecated MeasureTheory.Memℒp.eLpNorm_mk_lt_top (since := "2024-07-27")]
theorem MeasureTheory.Memℒp.snorm_mk_lt_top {α : Type u_5} {E : Type u_6} [MeasurableSpace α] {μ : Measure α} [NormedAddCommGroup E] {p : ENNReal} {f : αE} (hfp : Memℒp f p μ) :
eLpNorm (↑(AEEqFun.mk f )) p μ <

Alias of MeasureTheory.Memℒp.eLpNorm_mk_lt_top.

def MeasureTheory.Lp {α : Type u_6} (E : Type u_5) {m : MeasurableSpace α} [NormedAddCommGroup E] (p : ENNReal) (μ : Measure α := by volume_tac) :

Lp space

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def MeasureTheory.Memℒp.toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : αE) (h_mem_ℒp : Memℒp f p μ) :
        (Lp E p μ)

        make an element of Lp from a function verifying Memℒp

        Equations
        Instances For
          theorem MeasureTheory.Memℒp.toLp_val {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (h : Memℒp f p μ) :
          (toLp f h) = AEEqFun.mk f
          theorem MeasureTheory.Memℒp.coeFn_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : Memℒp f p μ) :
          (toLp f hf) =ᶠ[ae μ] f
          theorem MeasureTheory.Memℒp.toLp_congr {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hf : Memℒp f p μ) (hg : Memℒp g p μ) (hfg : f =ᶠ[ae μ] g) :
          toLp f hf = toLp g hg
          @[simp]
          theorem MeasureTheory.Memℒp.toLp_eq_toLp_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hf : Memℒp f p μ) (hg : Memℒp g p μ) :
          toLp f hf = toLp g hg f =ᶠ[ae μ] g
          @[simp]
          theorem MeasureTheory.Memℒp.toLp_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (h : Memℒp 0 p μ) :
          toLp 0 h = 0
          theorem MeasureTheory.Memℒp.toLp_add {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hf : Memℒp f p μ) (hg : Memℒp g p μ) :
          toLp (f + g) = toLp f hf + toLp g hg
          theorem MeasureTheory.Memℒp.toLp_neg {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : Memℒp f p μ) :
          toLp (-f) = -toLp f hf
          theorem MeasureTheory.Memℒp.toLp_sub {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (hf : Memℒp f p μ) (hg : Memℒp g p μ) :
          toLp (f - g) = toLp f hf - toLp g hg
          instance MeasureTheory.Lp.instCoeFun {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] :
          CoeFun (Lp E p μ) fun (x : (Lp E p μ)) => αE
          Equations
          theorem MeasureTheory.Lp.ext {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : (Lp E p μ)} (h : f =ᶠ[ae μ] g) :
          f = g
          theorem MeasureTheory.Lp.mem_Lp_iff_eLpNorm_lt_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : α →ₘ[μ] E} :
          f Lp E p μ eLpNorm (↑f) p μ <
          @[deprecated MeasureTheory.Lp.mem_Lp_iff_eLpNorm_lt_top (since := "2024-07-27")]
          theorem MeasureTheory.Lp.mem_Lp_iff_snorm_lt_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : α →ₘ[μ] E} :
          f Lp E p μ eLpNorm (↑f) p μ <

          Alias of MeasureTheory.Lp.mem_Lp_iff_eLpNorm_lt_top.

          theorem MeasureTheory.Lp.mem_Lp_iff_memℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : α →ₘ[μ] E} :
          f Lp E p μ Memℒp (↑f) p μ
          theorem MeasureTheory.Lp.antitone {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [IsFiniteMeasure μ] {p q : ENNReal} (hpq : p q) :
          Lp E q μ Lp E p μ
          @[simp]
          theorem MeasureTheory.Lp.coeFn_mk {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : α →ₘ[μ] E} (hf : eLpNorm (↑f) p μ < ) :
          f, hf = f
          theorem MeasureTheory.Lp.coe_mk {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : α →ₘ[μ] E} (hf : eLpNorm (↑f) p μ < ) :
          f, hf = f
          @[simp]
          theorem MeasureTheory.Lp.toLp_coeFn {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) (hf : Memℒp (↑f) p μ) :
          Memℒp.toLp (↑f) hf = f
          theorem MeasureTheory.Lp.eLpNorm_lt_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          eLpNorm (↑f) p μ <
          @[deprecated MeasureTheory.Lp.eLpNorm_lt_top (since := "2024-07-27")]
          theorem MeasureTheory.Lp.snorm_lt_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          eLpNorm (↑f) p μ <

          Alias of MeasureTheory.Lp.eLpNorm_lt_top.

          theorem MeasureTheory.Lp.eLpNorm_ne_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          eLpNorm (↑f) p μ
          @[deprecated MeasureTheory.Lp.eLpNorm_ne_top (since := "2024-07-27")]
          theorem MeasureTheory.Lp.snorm_ne_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          eLpNorm (↑f) p μ

          Alias of MeasureTheory.Lp.eLpNorm_ne_top.

          theorem MeasureTheory.Lp.stronglyMeasurable {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          theorem MeasureTheory.Lp.aestronglyMeasurable {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          theorem MeasureTheory.Lp.memℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          Memℒp (↑f) p μ
          theorem MeasureTheory.Lp.coeFn_zero {α : Type u_1} (E : Type u_2) {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] :
          0 =ᶠ[ae μ] 0
          theorem MeasureTheory.Lp.coeFn_neg {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          (-f) =ᶠ[ae μ] -f
          theorem MeasureTheory.Lp.coeFn_add {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f g : (Lp E p μ)) :
          (f + g) =ᶠ[ae μ] f + g
          theorem MeasureTheory.Lp.coeFn_sub {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f g : (Lp E p μ)) :
          (f - g) =ᶠ[ae μ] f - g
          theorem MeasureTheory.Lp.const_mem_Lp {E : Type u_2} {p : ENNReal} [NormedAddCommGroup E] (α : Type u_5) {x✝ : MeasurableSpace α} (μ : Measure α) (c : E) [IsFiniteMeasure μ] :
          AEEqFun.const α c Lp E p μ
          instance MeasureTheory.Lp.instNorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] :
          Norm (Lp E p μ)
          Equations
          instance MeasureTheory.Lp.instNNNorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] :
          NNNorm (Lp E p μ)
          Equations
          instance MeasureTheory.Lp.instDist {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] :
          Dist (Lp E p μ)
          Equations
          instance MeasureTheory.Lp.instEDist {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] :
          EDist (Lp E p μ)
          Equations
          theorem MeasureTheory.Lp.norm_def {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          f = (eLpNorm (↑f) p μ).toReal
          theorem MeasureTheory.Lp.nnnorm_def {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          f‖₊ = (eLpNorm (↑f) p μ).toNNReal
          @[simp]
          theorem MeasureTheory.Lp.coe_nnnorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          @[simp]
          theorem MeasureTheory.Lp.nnnorm_coe_ennreal {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          f‖₊ = eLpNorm (↑f) p μ
          @[simp]
          theorem MeasureTheory.Lp.norm_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : αE) (hf : Memℒp f p μ) :
          Memℒp.toLp f hf = (eLpNorm f p μ).toReal
          @[simp]
          theorem MeasureTheory.Lp.nnnorm_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : αE) (hf : Memℒp f p μ) :
          Memℒp.toLp f hf‖₊ = (eLpNorm f p μ).toNNReal
          theorem MeasureTheory.Lp.coe_nnnorm_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : Memℒp f p μ) :
          theorem MeasureTheory.Lp.dist_def {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f g : (Lp E p μ)) :
          dist f g = (eLpNorm (f - g) p μ).toReal
          theorem MeasureTheory.Lp.edist_def {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f g : (Lp E p μ)) :
          edist f g = eLpNorm (f - g) p μ
          theorem MeasureTheory.Lp.edist_dist {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f g : (Lp E p μ)) :
          theorem MeasureTheory.Lp.dist_edist {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f g : (Lp E p μ)) :
          dist f g = (edist f g).toReal
          theorem MeasureTheory.Lp.dist_eq_norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f g : (Lp E p μ)) :
          dist f g = f - g
          @[simp]
          theorem MeasureTheory.Lp.edist_toLp_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f g : αE) (hf : Memℒp f p μ) (hg : Memℒp g p μ) :
          edist (Memℒp.toLp f hf) (Memℒp.toLp g hg) = eLpNorm (f - g) p μ
          @[simp]
          theorem MeasureTheory.Lp.edist_toLp_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : αE) (hf : Memℒp f p μ) :
          edist (Memℒp.toLp f hf) 0 = eLpNorm f p μ
          @[simp]
          theorem MeasureTheory.Lp.nnnorm_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] :
          @[simp]
          theorem MeasureTheory.Lp.norm_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] :
          @[simp]
          theorem MeasureTheory.Lp.norm_measure_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} [NormedAddCommGroup E] (f : (Lp E p 0)) :
          @[simp]
          theorem MeasureTheory.Lp.norm_exponent_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E 0 μ)) :
          theorem MeasureTheory.Lp.nnnorm_eq_zero_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : (Lp E p μ)} (hp : 0 < p) :
          f‖₊ = 0 f = 0
          theorem MeasureTheory.Lp.norm_eq_zero_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : (Lp E p μ)} (hp : 0 < p) :
          f = 0 f = 0
          theorem MeasureTheory.Lp.eq_zero_iff_ae_eq_zero {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : (Lp E p μ)} :
          f = 0 f =ᶠ[ae μ] 0
          @[simp]
          theorem MeasureTheory.Lp.nnnorm_neg {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          @[simp]
          theorem MeasureTheory.Lp.norm_neg {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) :
          theorem MeasureTheory.Lp.nnnorm_le_mul_nnnorm_of_ae_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {c : NNReal} {f : (Lp E p μ)} {g : (Lp F p μ)} (h : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) :
          theorem MeasureTheory.Lp.norm_le_mul_norm_of_ae_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {c : } {f : (Lp E p μ)} {g : (Lp F p μ)} (h : ∀ᵐ (x : α) μ, f x c * g x) :
          theorem MeasureTheory.Lp.norm_le_norm_of_ae_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : (Lp E p μ)} {g : (Lp F p μ)} (h : ∀ᵐ (x : α) μ, f x g x) :
          theorem MeasureTheory.Lp.mem_Lp_of_nnnorm_ae_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {c : NNReal} {f : α →ₘ[μ] E} {g : (Lp F p μ)} (h : ∀ᵐ (x : α) μ, f x‖₊ c * g x‖₊) :
          f Lp E p μ
          theorem MeasureTheory.Lp.mem_Lp_of_ae_le_mul {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {c : } {f : α →ₘ[μ] E} {g : (Lp F p μ)} (h : ∀ᵐ (x : α) μ, f x c * g x) :
          f Lp E p μ
          theorem MeasureTheory.Lp.mem_Lp_of_nnnorm_ae_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : α →ₘ[μ] E} {g : (Lp F p μ)} (h : ∀ᵐ (x : α) μ, f x‖₊ g x‖₊) :
          f Lp E p μ
          theorem MeasureTheory.Lp.mem_Lp_of_ae_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : α →ₘ[μ] E} {g : (Lp F p μ)} (h : ∀ᵐ (x : α) μ, f x g x) :
          f Lp E p μ
          theorem MeasureTheory.Lp.mem_Lp_of_ae_nnnorm_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [IsFiniteMeasure μ] {f : α →ₘ[μ] E} (C : NNReal) (hfC : ∀ᵐ (x : α) μ, f x‖₊ C) :
          f Lp E p μ
          theorem MeasureTheory.Lp.mem_Lp_of_ae_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [IsFiniteMeasure μ] {f : α →ₘ[μ] E} (C : ) (hfC : ∀ᵐ (x : α) μ, f x C) :
          f Lp E p μ
          theorem MeasureTheory.Lp.nnnorm_le_of_ae_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [IsFiniteMeasure μ] {f : (Lp E p μ)} {C : NNReal} (hfC : ∀ᵐ (x : α) μ, f x‖₊ C) :
          theorem MeasureTheory.Lp.norm_le_of_ae_bound {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [IsFiniteMeasure μ] {f : (Lp E p μ)} {C : } (hC : 0 C) (hfC : ∀ᵐ (x : α) μ, f x C) :
          f (measureUnivNNReal μ) ^ p.toReal⁻¹ * C
          theorem MeasureTheory.Lp.const_smul_mem_Lp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (c : 𝕜) (f : (Lp E p μ)) :
          c f Lp E p μ
          def MeasureTheory.Lp.LpSubmodule {α : Type u_1} (E : Type u_2) {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] (𝕜 : Type u_5) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] :
          Submodule 𝕜 (α →ₘ[μ] E)

          The 𝕜-submodule of elements of α →ₘ[μ] E whose Lp norm is finite. This is Lp E p μ, with extra structure.

          Equations
          Instances For
            theorem MeasureTheory.Lp.coe_LpSubmodule {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] :
            (LpSubmodule E p μ 𝕜).toAddSubgroup = Lp E p μ
            instance MeasureTheory.Lp.instModule {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] :
            Module 𝕜 (Lp E p μ)
            Equations
            theorem MeasureTheory.Lp.coeFn_smul {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (c : 𝕜) (f : (Lp E p μ)) :
            (c f) =ᶠ[ae μ] c f
            instance MeasureTheory.Lp.instIsCentralScalar {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] [Module 𝕜ᵐᵒᵖ E] [BoundedSMul 𝕜ᵐᵒᵖ E] [IsCentralScalar 𝕜 E] :
            IsCentralScalar 𝕜 (Lp E p μ)
            instance MeasureTheory.Lp.instSMulCommClass {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} {𝕜' : Type u_6} [NormedRing 𝕜] [NormedRing 𝕜'] [Module 𝕜 E] [Module 𝕜' E] [BoundedSMul 𝕜 E] [BoundedSMul 𝕜' E] [SMulCommClass 𝕜 𝕜' E] :
            SMulCommClass 𝕜 𝕜' (Lp E p μ)
            instance MeasureTheory.Lp.instIsScalarTower {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} {𝕜' : Type u_6} [NormedRing 𝕜] [NormedRing 𝕜'] [Module 𝕜 E] [Module 𝕜' E] [BoundedSMul 𝕜 E] [BoundedSMul 𝕜' E] [SMul 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' E] :
            IsScalarTower 𝕜 𝕜' (Lp E p μ)
            instance MeasureTheory.Lp.instBoundedSMul {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] [Fact (1 p)] :
            BoundedSMul 𝕜 (Lp E p μ)
            instance MeasureTheory.Lp.instNormedSpace {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedField 𝕜] [NormedSpace 𝕜 E] [Fact (1 p)] :
            NormedSpace 𝕜 (Lp E p μ)
            Equations
            theorem MeasureTheory.Memℒp.toLp_const_smul {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {𝕜 : Type u_5} [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] {f : αE} (c : 𝕜) (hf : Memℒp f p μ) :
            toLp (c f) = c toLp f hf

            Indicator of a set as an element of Lᵖ #

            For a set s with (hs : MeasurableSet s) and (hμs : μ s < ∞), we build indicatorConstLp p hs hμs c, the element of Lp corresponding to s.indicator (fun _ => c).

            @[deprecated MeasureTheory.eLpNormEssSup_indicator_le (since := "2024-07-27")]
            theorem MeasureTheory.snormEssSup_indicator_le {α : Type u_1} {G : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] (s : Set α) (f : αG) :
            eLpNormEssSup (s.indicator f) μ eLpNormEssSup f μ

            Alias of MeasureTheory.eLpNormEssSup_indicator_le.

            @[deprecated MeasureTheory.eLpNormEssSup_indicator_const_le (since := "2024-07-27")]
            theorem MeasureTheory.snormEssSup_indicator_const_le {α : Type u_1} {G : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] (s : Set α) (c : G) :
            eLpNormEssSup (s.indicator fun (x : α) => c) μ c‖₊

            Alias of MeasureTheory.eLpNormEssSup_indicator_const_le.

            @[deprecated MeasureTheory.eLpNormEssSup_indicator_const_eq (since := "2024-07-27")]
            theorem MeasureTheory.snormEssSup_indicator_const_eq {α : Type u_1} {G : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] (s : Set α) (c : G) (hμs : μ s 0) :
            eLpNormEssSup (s.indicator fun (x : α) => c) μ = c‖₊

            Alias of MeasureTheory.eLpNormEssSup_indicator_const_eq.

            @[deprecated MeasureTheory.eLpNorm_indicator_le (since := "2024-07-27")]
            theorem MeasureTheory.snorm_indicator_le {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} (f : αE) :
            eLpNorm (s.indicator f) p μ eLpNorm f p μ

            Alias of MeasureTheory.eLpNorm_indicator_le.

            @[deprecated MeasureTheory.eLpNorm_indicator_const₀ (since := "2024-07-27")]
            theorem MeasureTheory.snorm_indicator_const₀ {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {c : F} {s : Set α} (hs : NullMeasurableSet s μ) (hp : p 0) (hp_top : p ) :
            eLpNorm (s.indicator fun (x : α) => c) p μ = c‖₊ * μ s ^ (1 / p.toReal)

            Alias of MeasureTheory.eLpNorm_indicator_const₀.

            @[deprecated MeasureTheory.eLpNorm_indicator_const (since := "2024-07-27")]
            theorem MeasureTheory.snorm_indicator_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {c : F} {s : Set α} (hs : MeasurableSet s) (hp : p 0) (hp_top : p ) :
            eLpNorm (s.indicator fun (x : α) => c) p μ = c‖₊ * μ s ^ (1 / p.toReal)

            Alias of MeasureTheory.eLpNorm_indicator_const.

            @[deprecated MeasureTheory.eLpNorm_indicator_const' (since := "2024-07-27")]
            theorem MeasureTheory.snorm_indicator_const' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {c : F} {s : Set α} (hs : MeasurableSet s) (hμs : μ s 0) (hp : p 0) :
            eLpNorm (s.indicator fun (x : α) => c) p μ = c‖₊ * μ s ^ (1 / p.toReal)

            Alias of MeasureTheory.eLpNorm_indicator_const'.

            @[deprecated MeasureTheory.eLpNorm_indicator_const_le (since := "2024-07-27")]
            theorem MeasureTheory.snorm_indicator_const_le {α : Type u_1} {G : Type u_5} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] {s : Set α} (c : G) (p : ENNReal) :
            eLpNorm (s.indicator fun (x : α) => c) p μ c‖₊ * μ s ^ (1 / p.toReal)

            Alias of MeasureTheory.eLpNorm_indicator_const_le.

            @[deprecated MeasureTheory.eLpNormEssSup_indicator_eq_eLpNormEssSup_restrict (since := "2024-07-27")]
            theorem MeasureTheory.snormEssSup_indicator_eq_snormEssSup_restrict {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {s : Set α} (hs : MeasurableSet s) :
            eLpNormEssSup (s.indicator f) μ = eLpNormEssSup f (μ.restrict s)

            Alias of MeasureTheory.eLpNormEssSup_indicator_eq_eLpNormEssSup_restrict.

            @[deprecated MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict (since := "2024-07-27")]
            theorem MeasureTheory.snorm_indicator_eq_snorm_restrict {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup F] {f : αF} {s : Set α} (hs : MeasurableSet s) :
            eLpNorm (s.indicator f) p μ = eLpNorm f p (μ.restrict s)

            Alias of MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict.

            theorem MeasureTheory.exists_eLpNorm_indicator_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hp : p ) (c : E) {ε : ENNReal} (hε : ε 0) :
            ∃ (η : NNReal), 0 < η ∀ (s : Set α), μ s ηeLpNorm (s.indicator fun (x : α) => c) p μ ε

            The ℒ^p norm of the indicator of a set is uniformly small if the set itself has small measure, for any p < ∞. Given here as an existential ∀ ε > 0, ∃ η > 0, ... to avoid later management of ℝ≥0∞-arithmetic.

            @[deprecated MeasureTheory.exists_eLpNorm_indicator_le (since := "2024-07-27")]
            theorem MeasureTheory.exists_snorm_indicator_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hp : p ) (c : E) {ε : ENNReal} (hε : ε 0) :
            ∃ (η : NNReal), 0 < η ∀ (s : Set α), μ s ηeLpNorm (s.indicator fun (x : α) => c) p μ ε

            Alias of MeasureTheory.exists_eLpNorm_indicator_le.


            The ℒ^p norm of the indicator of a set is uniformly small if the set itself has small measure, for any p < ∞. Given here as an existential ∀ ε > 0, ∃ η > 0, ... to avoid later management of ℝ≥0∞-arithmetic.

            A bounded measurable function with compact support is in L^p.

            A continuous function with compact support is in L^p.

            def MeasureTheory.indicatorConstLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} (p : ENNReal) (hs : MeasurableSet s) (hμs : μ s ) (c : E) :
            (Lp E p μ)

            Indicator of a set as an element of Lp.

            Equations
            Instances For
              theorem MeasureTheory.indicatorConstLp_add {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c c' : E} :
              indicatorConstLp p hs hμs c + indicatorConstLp p hs hμs c' = indicatorConstLp p hs hμs (c + c')

              A version of Set.indicator_add for MeasureTheory.indicatorConstLp.

              theorem MeasureTheory.indicatorConstLp_sub {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c c' : E} :
              indicatorConstLp p hs hμs c - indicatorConstLp p hs hμs c' = indicatorConstLp p hs hμs (c - c')

              A version of Set.indicator_sub for MeasureTheory.indicatorConstLp.

              theorem MeasureTheory.indicatorConstLp_coeFn {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              (indicatorConstLp p hs hμs c) =ᶠ[ae μ] s.indicator fun (x : α) => c
              theorem MeasureTheory.indicatorConstLp_coeFn_mem {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              ∀ᵐ (x : α) μ, x s(indicatorConstLp p hs hμs c) x = c
              theorem MeasureTheory.indicatorConstLp_coeFn_nmem {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              ∀ᵐ (x : α) μ, xs(indicatorConstLp p hs hμs c) x = 0
              theorem MeasureTheory.norm_indicatorConstLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} (hp_ne_zero : p 0) (hp_ne_top : p ) :
              indicatorConstLp p hs hμs c = c * (μ s).toReal ^ (1 / p.toReal)
              theorem MeasureTheory.norm_indicatorConstLp_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} (hμs_ne_zero : μ s 0) :
              theorem MeasureTheory.norm_indicatorConstLp' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} (hp_pos : p 0) (hμs_pos : μ s 0) :
              indicatorConstLp p hs hμs c = c * (μ s).toReal ^ (1 / p.toReal)
              theorem MeasureTheory.norm_indicatorConstLp_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              indicatorConstLp p hs hμs c c * (μ s).toReal ^ (1 / p.toReal)
              theorem MeasureTheory.nnnorm_indicatorConstLp_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              indicatorConstLp p hs hμs c‖₊ c‖₊ * (μ s).toNNReal ^ (1 / p.toReal)
              theorem MeasureTheory.ennnorm_indicatorConstLp_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} :
              indicatorConstLp p hs hμs c‖₊ c‖₊ * μ s ^ (1 / p.toReal)
              theorem MeasureTheory.edist_indicatorConstLp_eq_nnnorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} {t : Set α} {ht : MeasurableSet t} {hμt : μ t } :
              edist (indicatorConstLp p hs hμs c) (indicatorConstLp p ht hμt c) = indicatorConstLp p c‖₊
              theorem MeasureTheory.dist_indicatorConstLp_eq_norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} {t : Set α} {ht : MeasurableSet t} {hμt : μ t } :
              dist (indicatorConstLp p hs hμs c) (indicatorConstLp p ht hμt c) = indicatorConstLp p c
              theorem MeasureTheory.tendsto_indicatorConstLp_set {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s : Set α} {hs : MeasurableSet s} {hμs : μ s } {c : E} [hp₁ : Fact (1 p)] {β : Type u_5} {l : Filter β} {t : βSet α} {ht : ∀ (b : β), MeasurableSet (t b)} {hμt : ∀ (b : β), μ (t b) } (hp : p ) (h : Filter.Tendsto (fun (b : β) => μ (symmDiff (t b) s)) l (nhds 0)) :
              Filter.Tendsto (fun (b : β) => indicatorConstLp p c) l (nhds (indicatorConstLp p hs hμs c))

              A family of indicatorConstLp functions tends to an indicatorConstLp, if the underlying sets tend to the set in the sense of the measure of the symmetric difference.

              theorem MeasureTheory.continuous_indicatorConstLp_set {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {c : E} [Fact (1 p)] {X : Type u_5} [TopologicalSpace X] {s : XSet α} {hs : ∀ (x : X), MeasurableSet (s x)} {hμs : ∀ (x : X), μ (s x) } (hp : p ) (h : ∀ (x : X), Filter.Tendsto (fun (y : X) => μ (symmDiff (s y) (s x))) (nhds x) (nhds 0)) :
              Continuous fun (x : X) => indicatorConstLp p c

              A family of indicatorConstLp functions is continuous in the parameter, if μ (s y ∆ s x) tends to zero as y tends to x for all x.

              @[simp]
              theorem MeasureTheory.indicatorConstLp_empty {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {c : E} :
              indicatorConstLp p c = 0
              theorem MeasureTheory.indicatorConstLp_inj {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s t : Set α} (hs : MeasurableSet s) (hsμ : μ s ) (ht : MeasurableSet t) (htμ : μ t ) {c : E} (hc : c 0) :
              indicatorConstLp p hs hsμ c = indicatorConstLp p ht htμ c s =ᶠ[ae μ] t
              theorem MeasureTheory.memℒp_add_of_disjoint {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f g : αE} (h : Disjoint (Function.support f) (Function.support g)) (hf : StronglyMeasurable f) (hg : StronglyMeasurable g) :
              Memℒp (f + g) p μ Memℒp f p μ Memℒp g p μ
              theorem MeasureTheory.indicatorConstLp_disjoint_union {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {s t : Set α} (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : Disjoint s t) (c : E) :
              indicatorConstLp p c = indicatorConstLp p hs hμs c + indicatorConstLp p ht hμt c

              The indicator of a disjoint union of two sets is the sum of the indicators of the sets.

              def MeasureTheory.Lp.const {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] :
              E →+ (Lp E p μ)

              Constant function as an element of MeasureTheory.Lp for a finite measure.

              Equations
              Instances For
                theorem MeasureTheory.Lp.coeFn_const {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (c : E) :
                ((Lp.const p μ) c) =ᶠ[ae μ] Function.const α c
                @[simp]
                theorem MeasureTheory.Lp.const_val {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (c : E) :
                ((Lp.const p μ) c) = AEEqFun.const α c
                @[simp]
                theorem MeasureTheory.Memℒp.toLp_const {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (c : E) :
                toLp (fun (x : α) => c) = (Lp.const p μ) c
                @[simp]
                theorem MeasureTheory.indicatorConstLp_univ {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (c : E) :
                indicatorConstLp p c = (Lp.const p μ) c
                theorem MeasureTheory.Lp.norm_const {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (c : E) [NeZero μ] (hp_zero : p 0) :
                (Lp.const p μ) c = c * (μ Set.univ).toReal ^ (1 / p.toReal)
                theorem MeasureTheory.Lp.norm_const' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (c : E) (hp_zero : p 0) (hp_top : p ) :
                (Lp.const p μ) c = c * (μ Set.univ).toReal ^ (1 / p.toReal)
                theorem MeasureTheory.Lp.norm_const_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (c : E) :
                (Lp.const p μ) c c * (μ Set.univ).toReal ^ (1 / p.toReal)
                def MeasureTheory.Lp.constₗ {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (𝕜 : Type u_5) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] :
                E →ₗ[𝕜] (Lp E p μ)

                MeasureTheory.Lp.const as a LinearMap.

                Equations
                Instances For
                  @[simp]
                  theorem MeasureTheory.Lp.constₗ_apply {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (𝕜 : Type u_5) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (a : E) :
                  (Lp.constₗ p μ 𝕜) a = (Lp.const p μ) a
                  def MeasureTheory.Lp.constL {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (𝕜 : Type u_5) [NormedField 𝕜] [NormedSpace 𝕜 E] [Fact (1 p)] :
                  E →L[𝕜] (Lp E p μ)
                  Equations
                  Instances For
                    @[simp]
                    theorem MeasureTheory.Lp.constL_apply {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (𝕜 : Type u_5) [NormedField 𝕜] [NormedSpace 𝕜 E] [Fact (1 p)] (a : E) :
                    (Lp.constL p μ 𝕜) a = (Lp.const p μ) a
                    theorem MeasureTheory.Lp.norm_constL_le {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : Measure α) [NormedAddCommGroup E] [IsFiniteMeasure μ] (𝕜 : Type u_5) [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [Fact (1 p)] :
                    Lp.constL p μ 𝕜 (μ Set.univ).toReal ^ (1 / p.toReal)
                    theorem MeasureTheory.Memℒp.norm_rpow_div {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : Memℒp f p μ) (q : ENNReal) :
                    Memℒp (fun (x : α) => f x ^ q.toReal) (p / q) μ
                    theorem MeasureTheory.memℒp_norm_rpow_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {q : ENNReal} {f : αE} (hf : AEStronglyMeasurable f μ) (q_zero : q 0) (q_top : q ) :
                    Memℒp (fun (x : α) => f x ^ q.toReal) (p / q) μ Memℒp f p μ
                    theorem MeasureTheory.Memℒp.norm_rpow {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : Memℒp f p μ) (hp_ne_zero : p 0) (hp_ne_top : p ) :
                    Memℒp (fun (x : α) => f x ^ p.toReal) 1 μ
                    theorem MeasureTheory.AEEqFun.compMeasurePreserving_mem_Lp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} {g : β →ₘ[μb] E} (hg : g Lp E p μb) {f : αβ} (hf : MeasurePreserving f μ μb) :
                    g.compMeasurePreserving f hf Lp E p μ

                    Composition with a measure preserving function #

                    def MeasureTheory.Lp.compMeasurePreserving {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} (f : αβ) (hf : MeasurePreserving f μ μb) :
                    (Lp E p μb) →+ (Lp E p μ)

                    Composition of an L^p function with a measure preserving function is an L^p function.

                    Equations
                    Instances For
                      @[simp]
                      theorem MeasureTheory.Lp.compMeasurePreserving_val {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} {f : αβ} (g : (Lp E p μb)) (hf : MeasurePreserving f μ μb) :
                      ((compMeasurePreserving f hf) g) = (↑g).compMeasurePreserving f hf
                      theorem MeasureTheory.Lp.coeFn_compMeasurePreserving {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} {f : αβ} (g : (Lp E p μb)) (hf : MeasurePreserving f μ μb) :
                      ((compMeasurePreserving f hf) g) =ᶠ[ae μ] g f
                      @[simp]
                      theorem MeasureTheory.Lp.norm_compMeasurePreserving {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} {f : αβ} (g : (Lp E p μb)) (hf : MeasurePreserving f μ μb) :
                      theorem MeasureTheory.Lp.isometry_compMeasurePreserving {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} {f : αβ} [Fact (1 p)] (hf : MeasurePreserving f μ μb) :
                      theorem MeasureTheory.Lp.toLp_compMeasurePreserving {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} {f : αβ} {g : βE} (hg : Memℒp g p μb) (hf : MeasurePreserving f μ μb) :
                      theorem MeasureTheory.Lp.indicatorConstLp_compMeasurePreserving {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} {f : αβ} {s : Set β} (hs : MeasurableSet s) (hμs : μb s ) (c : E) (hf : MeasurePreserving f μ μb) :
                      (compMeasurePreserving f hf) (indicatorConstLp p hs hμs c) = indicatorConstLp p c
                      def MeasureTheory.Lp.compMeasurePreservingₗ {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} (𝕜 : Type u_6) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (f : αβ) (hf : MeasurePreserving f μ μb) :
                      (Lp E p μb) →ₗ[𝕜] (Lp E p μ)

                      MeasureTheory.Lp.compMeasurePreserving as a linear map.

                      Equations
                      Instances For
                        @[simp]
                        theorem MeasureTheory.Lp.compMeasurePreservingₗ_apply {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} (𝕜 : Type u_6) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] (f : αβ) (hf : MeasurePreserving f μ μb) (a✝ : (Lp E p μb)) :
                        (compMeasurePreservingₗ 𝕜 f hf) a✝ = (↑(compMeasurePreserving f hf)).toFun a✝
                        def MeasureTheory.Lp.compMeasurePreservingₗᵢ {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} (𝕜 : Type u_6) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] [Fact (1 p)] (f : αβ) (hf : MeasurePreserving f μ μb) :
                        (Lp E p μb) →ₗᵢ[𝕜] (Lp E p μ)

                        MeasureTheory.Lp.compMeasurePreserving as a linear isometry.

                        Equations
                        Instances For
                          @[simp]
                          theorem MeasureTheory.Lp.compMeasurePreservingₗᵢ_apply_coe {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {β : Type u_5} [MeasurableSpace β] {μb : Measure β} (𝕜 : Type u_6) [NormedRing 𝕜] [Module 𝕜 E] [BoundedSMul 𝕜 E] [Fact (1 p)] (f : αβ) (hf : MeasurePreserving f μ μb) (a✝ : (Lp E p μb)) :
                          ((compMeasurePreservingₗᵢ 𝕜 f hf) a✝) = (↑a✝).compMeasurePreserving f hf

                          Composition on L^p #

                          We show that Lipschitz functions vanishing at zero act by composition on L^p, and specialize this to the composition with continuous linear maps, and to the definition of the positive part of an L^p function.

                          theorem LipschitzWith.comp_memℒp {p : ENNReal} {α : Type u_5} {E : Type u_6} {F : Type u_7} {K : NNReal} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : EF} (hg : LipschitzWith K g) (g0 : g 0 = 0) (hL : MeasureTheory.Memℒp f p μ) :
                          theorem MeasureTheory.Memℒp.of_comp_antilipschitzWith {p : ENNReal} {α : Type u_5} {E : Type u_6} {F : Type u_7} {K' : NNReal} [MeasurableSpace α] {μ : Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : EF} (hL : Memℒp (g f) p μ) (hg : UniformContinuous g) (hg' : AntilipschitzWith K' g) (g0 : g 0 = 0) :
                          Memℒp f p μ
                          theorem LipschitzWith.memℒp_comp_iff_of_antilipschitz {p : ENNReal} {α : Type u_5} {E : Type u_6} {F : Type u_7} {K K' : NNReal} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : EF} (hg : LipschitzWith K g) (hg' : AntilipschitzWith K' g) (g0 : g 0 = 0) :
                          def LipschitzWith.compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) (f : (MeasureTheory.Lp E p μ)) :
                          (MeasureTheory.Lp F p μ)

                          When g is a Lipschitz function sending 0 to 0 and f is in Lp, then g ∘ f is well defined as an element of Lp.

                          Equations
                          Instances For
                            theorem LipschitzWith.coeFn_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) (f : (MeasureTheory.Lp E p μ)) :
                            (hg.compLp g0 f) =ᵐ[μ] g f
                            @[simp]
                            theorem LipschitzWith.compLp_zero {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) :
                            hg.compLp g0 0 = 0
                            theorem LipschitzWith.norm_compLp_sub_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) (f f' : (MeasureTheory.Lp E p μ)) :
                            hg.compLp g0 f - hg.compLp g0 f' c * f - f'
                            theorem LipschitzWith.norm_compLp_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} (hg : LipschitzWith c g) (g0 : g 0 = 0) (f : (MeasureTheory.Lp E p μ)) :
                            hg.compLp g0 f c * f
                            theorem LipschitzWith.lipschitzWith_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} [Fact (1 p)] (hg : LipschitzWith c g) (g0 : g 0 = 0) :
                            LipschitzWith c (hg.compLp g0)
                            theorem LipschitzWith.continuous_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {g : EF} {c : NNReal} [Fact (1 p)] (hg : LipschitzWith c g) (g0 : g 0 = 0) :
                            Continuous (hg.compLp g0)
                            def ContinuousLinearMap.compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                            (MeasureTheory.Lp F p μ)

                            Composing f : Lp with L : E →L[𝕜] F.

                            Equations
                            • L.compLp f = .compLp f
                            Instances For
                              theorem ContinuousLinearMap.coeFn_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              ∀ᵐ (a : α) μ, (L.compLp f) a = L (f a)
                              theorem ContinuousLinearMap.coeFn_compLp' {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              (L.compLp f) =ᵐ[μ] fun (a : α) => L (f a)
                              theorem ContinuousLinearMap.comp_memℒp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              MeasureTheory.Memℒp (L f) p μ
                              theorem ContinuousLinearMap.comp_memℒp' {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
                              theorem MeasureTheory.Memℒp.ofReal {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {K : Type u_6} [RCLike K] {f : α} (hf : Memℒp f p μ) :
                              Memℒp (fun (x : α) => (f x)) p μ
                              theorem MeasureTheory.memℒp_re_im_iff {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {K : Type u_6} [RCLike K] {f : αK} :
                              Memℒp (fun (x : α) => RCLike.re (f x)) p μ Memℒp (fun (x : α) => RCLike.im (f x)) p μ Memℒp f p μ
                              theorem ContinuousLinearMap.add_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L L' : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              (L + L').compLp f = L.compLp f + L'.compLp f
                              theorem ContinuousLinearMap.smul_compLp {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] {𝕜' : Type u_6} [NormedRing 𝕜'] [Module 𝕜' F] [BoundedSMul 𝕜' F] [SMulCommClass 𝕜 𝕜' F] (c : 𝕜') (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              (c L).compLp f = c L.compLp f
                              theorem ContinuousLinearMap.norm_compLp_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                              L.compLp f L * f
                              def ContinuousLinearMap.compLpₗ {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] (L : E →L[𝕜] F) :
                              (MeasureTheory.Lp E p μ) →ₗ[𝕜] (MeasureTheory.Lp F p μ)

                              Composing f : Lp E p μ with L : E →L[𝕜] F, seen as a 𝕜-linear map on Lp E p μ.

                              Equations
                              Instances For
                                def ContinuousLinearMap.compLpL {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] (L : E →L[𝕜] F) :
                                (MeasureTheory.Lp E p μ) →L[𝕜] (MeasureTheory.Lp F p μ)

                                Composing f : Lp E p μ with L : E →L[𝕜] F, seen as a continuous 𝕜-linear map on Lp E p μ. See also the similar

                                Equations
                                Instances For
                                  theorem ContinuousLinearMap.coeFn_compLpL {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] (L : E →L[𝕜] F) (f : (MeasureTheory.Lp E p μ)) :
                                  ((compLpL p μ L) f) =ᵐ[μ] fun (a : α) => L (f a)
                                  theorem ContinuousLinearMap.add_compLpL {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] (L L' : E →L[𝕜] F) :
                                  compLpL p μ (L + L') = compLpL p μ L + compLpL p μ L'
                                  theorem ContinuousLinearMap.smul_compLpL {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] {𝕜' : Type u_6} [NormedRing 𝕜'] [Module 𝕜' F] [BoundedSMul 𝕜' F] [SMulCommClass 𝕜 𝕜' F] (c : 𝕜') (L : E →L[𝕜] F) :
                                  compLpL p μ (c L) = c compLpL p μ L
                                  theorem ContinuousLinearMap.norm_compLpL_le {α : Type u_1} {E : Type u_2} {F : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [Fact (1 p)] (L : E →L[𝕜] F) :
                                  theorem MeasureTheory.indicatorConstLp_eq_toSpanSingleton_compLp {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {s : Set α} [NormedSpace F] (hs : MeasurableSet s) (hμs : μ s ) (x : F) :
                                  theorem MeasureTheory.Memℒp.pos_part {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {f : α} (hf : Memℒp f p μ) :
                                  Memℒp (fun (x : α) => f x 0) p μ
                                  theorem MeasureTheory.Memℒp.neg_part {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {f : α} (hf : Memℒp f p μ) :
                                  Memℒp (fun (x : α) => -f x 0) p μ
                                  def MeasureTheory.Lp.posPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} (f : (Lp p μ)) :
                                  (Lp p μ)

                                  Positive part of a function in L^p.

                                  Equations
                                  Instances For
                                    def MeasureTheory.Lp.negPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} (f : (Lp p μ)) :
                                    (Lp p μ)

                                    Negative part of a function in L^p.

                                    Equations
                                    Instances For
                                      theorem MeasureTheory.Lp.coe_posPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} (f : (Lp p μ)) :
                                      (posPart f) = (↑f).posPart
                                      theorem MeasureTheory.Lp.coeFn_posPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} (f : (Lp p μ)) :
                                      (posPart f) =ᶠ[ae μ] fun (a : α) => f a 0
                                      theorem MeasureTheory.Lp.coeFn_negPart_eq_max {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} (f : (Lp p μ)) :
                                      ∀ᵐ (a : α) μ, (negPart f) a = -f a 0
                                      theorem MeasureTheory.Lp.coeFn_negPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} (f : (Lp p μ)) :
                                      ∀ᵐ (a : α) μ, (negPart f) a = -(f a 0)
                                      theorem MeasureTheory.Lp.continuous_posPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [Fact (1 p)] :
                                      Continuous fun (f : (Lp p μ)) => posPart f
                                      theorem MeasureTheory.Lp.continuous_negPart {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [Fact (1 p)] :
                                      Continuous fun (f : (Lp p μ)) => negPart f

                                      L^p is a complete space #

                                      We show that L^p is a complete space for 1 ≤ p.

                                      theorem MeasureTheory.Lp.eLpNorm'_lim_eq_lintegral_liminf {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] {ι : Type u_5} [Nonempty ι] [LinearOrder ι] {f : ιαG} {p : } (hp_nonneg : 0 p) {f_lim : αG} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm' f_lim p μ = (∫⁻ (a : α), Filter.liminf (fun (m : ι) => f m a‖₊ ^ p) Filter.atTop μ) ^ (1 / p)
                                      @[deprecated MeasureTheory.Lp.eLpNorm'_lim_eq_lintegral_liminf (since := "2024-07-27")]
                                      theorem MeasureTheory.Lp.snorm'_lim_eq_lintegral_liminf {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] {ι : Type u_5} [Nonempty ι] [LinearOrder ι] {f : ιαG} {p : } (hp_nonneg : 0 p) {f_lim : αG} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm' f_lim p μ = (∫⁻ (a : α), Filter.liminf (fun (m : ι) => f m a‖₊ ^ p) Filter.atTop μ) ^ (1 / p)

                                      Alias of MeasureTheory.Lp.eLpNorm'_lim_eq_lintegral_liminf.

                                      theorem MeasureTheory.Lp.eLpNorm'_lim_le_liminf_eLpNorm' {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {E : Type u_5} [NormedAddCommGroup E] {f : αE} {p : } (hp_pos : 0 < p) (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) {f_lim : αE} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm' f_lim p μ Filter.liminf (fun (n : ) => eLpNorm' (f n) p μ) Filter.atTop
                                      @[deprecated MeasureTheory.Lp.eLpNorm'_lim_le_liminf_eLpNorm' (since := "2024-07-27")]
                                      theorem MeasureTheory.Lp.snorm'_lim_le_liminf_snorm' {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {E : Type u_5} [NormedAddCommGroup E] {f : αE} {p : } (hp_pos : 0 < p) (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) {f_lim : αE} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm' f_lim p μ Filter.liminf (fun (n : ) => eLpNorm' (f n) p μ) Filter.atTop

                                      Alias of MeasureTheory.Lp.eLpNorm'_lim_le_liminf_eLpNorm'.

                                      theorem MeasureTheory.Lp.eLpNorm_exponent_top_lim_eq_essSup_liminf {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] {ι : Type u_5} [Nonempty ι] [LinearOrder ι] {f : ιαG} {f_lim : αG} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm f_lim μ = essSup (fun (x : α) => Filter.liminf (fun (m : ι) => f m x‖₊) Filter.atTop) μ
                                      @[deprecated MeasureTheory.Lp.eLpNorm_exponent_top_lim_eq_essSup_liminf (since := "2024-07-27")]
                                      theorem MeasureTheory.Lp.snorm_exponent_top_lim_eq_essSup_liminf {α : Type u_1} {G : Type u_4} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] {ι : Type u_5} [Nonempty ι] [LinearOrder ι] {f : ιαG} {f_lim : αG} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm f_lim μ = essSup (fun (x : α) => Filter.liminf (fun (m : ι) => f m x‖₊) Filter.atTop) μ

                                      Alias of MeasureTheory.Lp.eLpNorm_exponent_top_lim_eq_essSup_liminf.

                                      theorem MeasureTheory.Lp.eLpNorm_exponent_top_lim_le_liminf_eLpNorm_exponent_top {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {ι : Type u_5} [Nonempty ι] [Countable ι] [LinearOrder ι] {f : ιαF} {f_lim : αF} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm f_lim μ Filter.liminf (fun (n : ι) => eLpNorm (f n) μ) Filter.atTop
                                      @[deprecated MeasureTheory.Lp.eLpNorm_exponent_top_lim_le_liminf_eLpNorm_exponent_top (since := "2024-07-27")]
                                      theorem MeasureTheory.Lp.snorm_exponent_top_lim_le_liminf_snorm_exponent_top {α : Type u_1} {F : Type u_3} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup F] {ι : Type u_5} [Nonempty ι] [Countable ι] [LinearOrder ι] {f : ιαF} {f_lim : αF} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm f_lim μ Filter.liminf (fun (n : ι) => eLpNorm (f n) μ) Filter.atTop

                                      Alias of MeasureTheory.Lp.eLpNorm_exponent_top_lim_le_liminf_eLpNorm_exponent_top.

                                      theorem MeasureTheory.Lp.eLpNorm_lim_le_liminf_eLpNorm {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {E : Type u_5} [NormedAddCommGroup E] {f : αE} (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (f_lim : αE) (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm f_lim p μ Filter.liminf (fun (n : ) => eLpNorm (f n) p μ) Filter.atTop
                                      @[deprecated MeasureTheory.Lp.eLpNorm_lim_le_liminf_eLpNorm (since := "2024-07-27")]
                                      theorem MeasureTheory.Lp.snorm_lim_le_liminf_snorm {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} {E : Type u_5} [NormedAddCommGroup E] {f : αE} (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (f_lim : αE) (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      eLpNorm f_lim p μ Filter.liminf (fun (n : ) => eLpNorm (f n) p μ) Filter.atTop

                                      Alias of MeasureTheory.Lp.eLpNorm_lim_le_liminf_eLpNorm.

                                      Lp is complete iff Cauchy sequences of ℒp have limits in ℒp #

                                      theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_5} {fi : Filter ι} [Fact (1 p)] (f : ι(Lp E p μ)) (f_lim : (Lp E p μ)) :
                                      Filter.Tendsto f fi (nhds f_lim) Filter.Tendsto (fun (n : ι) => eLpNorm ((f n) - f_lim) p μ) fi (nhds 0)
                                      theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_5} {fi : Filter ι} [Fact (1 p)] (f : ι(Lp E p μ)) (f_lim : αE) (f_lim_ℒp : Memℒp f_lim p μ) :
                                      Filter.Tendsto f fi (nhds (Memℒp.toLp f_lim f_lim_ℒp)) Filter.Tendsto (fun (n : ι) => eLpNorm ((f n) - f_lim) p μ) fi (nhds 0)
                                      theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp'' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_5} {fi : Filter ι} [Fact (1 p)] (f : ιαE) (f_ℒp : ∀ (n : ι), Memℒp (f n) p μ) (f_lim : αE) (f_lim_ℒp : Memℒp f_lim p μ) :
                                      Filter.Tendsto (fun (n : ι) => Memℒp.toLp (f n) ) fi (nhds (Memℒp.toLp f_lim f_lim_ℒp)) Filter.Tendsto (fun (n : ι) => eLpNorm (f n - f_lim) p μ) fi (nhds 0)
                                      theorem MeasureTheory.Lp.tendsto_Lp_of_tendsto_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_5} {fi : Filter ι} [Fact (1 p)] {f : ι(Lp E p μ)} (f_lim : αE) (f_lim_ℒp : Memℒp f_lim p μ) (h_tendsto : Filter.Tendsto (fun (n : ι) => eLpNorm ((f n) - f_lim) p μ) fi (nhds 0)) :
                                      Filter.Tendsto f fi (nhds (Memℒp.toLp f_lim f_lim_ℒp))
                                      theorem MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_5} [Nonempty ι] [SemilatticeSup ι] [hp : Fact (1 p)] (f : ι(Lp E p μ)) :
                                      CauchySeq f Filter.Tendsto (fun (n : ι × ι) => eLpNorm ((f n.1) - (f n.2)) p μ) Filter.atTop (nhds 0)
                                      theorem MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [hp : Fact (1 p)] (H : ∀ (f : αE), (∀ (n : ), Memℒp (f n) p μ)∀ (B : ENNReal), ∑' (i : ), B i < (∀ (N n m : ), N nN meLpNorm (f n - f m) p μ < B N)∃ (f_lim : αE), Memℒp f_lim p μ Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) :
                                      CompleteSpace (Lp E p μ)

                                      Prove that controlled Cauchy sequences of ℒp have limits in ℒp #

                                      @[deprecated _private.Mathlib.MeasureTheory.Function.LpSpace.0.MeasureTheory.Lp.eLpNorm'_sum_norm_sub_le_tsum_of_cauchy_eLpNorm' (since := "2024-07-27")]
                                      theorem MeasureTheory.Lp.snorm'_sum_norm_sub_le_tsum_of_cauchy_snorm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) {p : } (hp1 : 1 p) {B : ENNReal} (h_cau : ∀ (N n m : ), N nN meLpNorm' (f n - f m) p μ < B N) (n : ) :
                                      eLpNorm' (fun (x : α) => iFinset.range (n + 1), f (i + 1) x - f i x) p μ ∑' (i : ), B i

                                      Alias of _private.Mathlib.MeasureTheory.Function.LpSpace.0.MeasureTheory.Lp.eLpNorm'_sum_norm_sub_le_tsum_of_cauchy_eLpNorm'.

                                      theorem MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] {f : αE} {p : } (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hp1 : 1 p) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN meLpNorm' (f n - f m) p μ < B N) :
                                      ∀ᵐ (x : α) μ, ∃ (l : E), Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds l)
                                      @[deprecated MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm' (since := "2024-07-27")]
                                      theorem MeasureTheory.Lp.ae_tendsto_of_cauchy_snorm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] {f : αE} {p : } (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hp1 : 1 p) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN meLpNorm' (f n - f m) p μ < B N) :
                                      ∀ᵐ (x : α) μ, ∃ (l : E), Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds l)

                                      Alias of MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm'.

                                      theorem MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] {f : αE} (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hp : 1 p) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN meLpNorm (f n - f m) p μ < B N) :
                                      ∀ᵐ (x : α) μ, ∃ (l : E), Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds l)
                                      @[deprecated MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm (since := "2024-07-27")]
                                      theorem MeasureTheory.Lp.ae_tendsto_of_cauchy_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] {f : αE} (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hp : 1 p) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN meLpNorm (f n - f m) p μ < B N) :
                                      ∀ᵐ (x : α) μ, ∃ (l : E), Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds l)

                                      Alias of MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm.

                                      theorem MeasureTheory.Lp.cauchy_tendsto_of_tendsto {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (f_lim : αE) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN meLpNorm (f n - f m) p μ < B N) (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
                                      Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)
                                      theorem MeasureTheory.Lp.memℒp_of_cauchy_tendsto {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hp : 1 p) {f : αE} (hf : ∀ (n : ), Memℒp (f n) p μ) (f_lim : αE) (h_lim_meas : AEStronglyMeasurable f_lim μ) (h_tendsto : Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) :
                                      Memℒp f_lim p μ
                                      theorem MeasureTheory.Lp.cauchy_complete_ℒp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] (hp : 1 p) {f : αE} (hf : ∀ (n : ), Memℒp (f n) p μ) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m : ), N nN meLpNorm (f n - f m) p μ < B N) :
                                      ∃ (f_lim : αE), Memℒp f_lim p μ Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)

                                      Lp is complete for 1 ≤ p #

                                      instance MeasureTheory.Lp.instCompleteSpace {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] [hp : Fact (1 p)] :
                                      CompleteSpace (Lp E p μ)

                                      Continuous functions in Lp #

                                      An additive subgroup of Lp E p μ, consisting of the equivalence classes which contain a bounded continuous representative.

                                      Equations
                                      Instances For
                                        theorem MeasureTheory.Lp.mem_boundedContinuousFunction_iff {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] {f : (Lp E p μ)} :
                                        f boundedContinuousFunction E p μ ∃ (f₀ : BoundedContinuousFunction α E), ContinuousMap.toAEEqFun μ f₀.toContinuousMap = f

                                        By definition, the elements of Lp.boundedContinuousFunction E p μ are the elements of Lp E p μ which contain a bounded continuous representative.

                                        A bounded continuous function on a finite-measure space is in Lp.

                                        The Lp-norm of a bounded continuous function is at most a constant (depending on the measure of the whole space) times its sup-norm.

                                        The Lp-norm of a bounded continuous function is at most a constant (depending on the measure of the whole space) times its sup-norm.

                                        The normed group homomorphism of considering a bounded continuous function on a finite-measure space as an element of Lp.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          The bounded linear map of considering a bounded continuous function on a finite-measure space as an element of Lp.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            theorem BoundedContinuousFunction.coeFn_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} (p : ENNReal) (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [MeasureTheory.IsFiniteMeasure μ] (𝕜 : Type u_5) [Fact (1 p)] [NormedField 𝕜] [NormedSpace 𝕜 E] (f : BoundedContinuousFunction α E) :
                                            ((toLp p μ 𝕜) f) =ᵐ[μ] f
                                            theorem BoundedContinuousFunction.toLp_inj {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] {f g : BoundedContinuousFunction α E} [μ.IsOpenPosMeasure] [NormedField 𝕜] [NormedSpace 𝕜 E] :
                                            (toLp p μ 𝕜) f = (toLp p μ 𝕜) g f = g
                                            theorem BoundedContinuousFunction.toLp_injective {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] [μ.IsOpenPosMeasure] [NormedField 𝕜] [NormedSpace 𝕜 E] :
                                            Function.Injective (toLp p μ 𝕜)

                                            The bounded linear map of considering a continuous function on a compact finite-measure space α as an element of Lp. By definition, the norm on C(α, E) is the sup-norm, transferred from the space α →ᵇ E of bounded continuous functions, so this construction is just a matter of transferring the structure from BoundedContinuousFunction.toLp along the isometry.

                                            Equations
                                            Instances For
                                              theorem ContinuousMap.coeFn_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [CompactSpace α] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] [NormedField 𝕜] [NormedSpace 𝕜 E] (f : C(α, E)) :
                                              ((toLp p μ 𝕜) f) =ᵐ[μ] f
                                              theorem ContinuousMap.toLp_def {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [CompactSpace α] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] [NormedField 𝕜] [NormedSpace 𝕜 E] (f : C(α, E)) :
                                              (toLp p μ 𝕜) f = (BoundedContinuousFunction.toLp p μ 𝕜) ((linearIsometryBoundedOfCompact α E 𝕜) f)
                                              @[simp]
                                              theorem ContinuousMap.toLp_comp_toContinuousMap {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [CompactSpace α] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] [NormedField 𝕜] [NormedSpace 𝕜 E] (f : BoundedContinuousFunction α E) :
                                              (toLp p μ 𝕜) f.toContinuousMap = (BoundedContinuousFunction.toLp p μ 𝕜) f
                                              @[simp]
                                              theorem ContinuousMap.coe_toLp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [CompactSpace α] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] [NormedField 𝕜] [NormedSpace 𝕜 E] (f : C(α, E)) :
                                              ((toLp p μ 𝕜) f) = toAEEqFun μ f
                                              theorem ContinuousMap.toLp_injective {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [CompactSpace α] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] [μ.IsOpenPosMeasure] [NormedField 𝕜] [NormedSpace 𝕜 E] :
                                              Function.Injective (toLp p μ 𝕜)
                                              theorem ContinuousMap.toLp_inj {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} (μ : MeasureTheory.Measure α) [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [CompactSpace α] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] {f g : C(α, E)} [μ.IsOpenPosMeasure] [NormedField 𝕜] [NormedSpace 𝕜 E] :
                                              (toLp p μ 𝕜) f = (toLp p μ 𝕜) g f = g
                                              theorem ContinuousMap.hasSum_of_hasSum_Lp {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [TopologicalSpace α] [BorelSpace α] [SecondCountableTopologyEither α E] [CompactSpace α] [MeasureTheory.IsFiniteMeasure μ] {𝕜 : Type u_5} [Fact (1 p)] {β : Type u_6} [μ.IsOpenPosMeasure] [NormedField 𝕜] [NormedSpace 𝕜 E] {g : βC(α, E)} {f : C(α, E)} (hg : Summable g) (hg2 : HasSum ((toLp p μ 𝕜) g) ((toLp p μ 𝕜) f)) :
                                              HasSum g f

                                              If a sum of continuous functions g n is convergent, and the same sum converges in Lᵖ to h, then in fact g n converges uniformly to h.

                                              theorem MeasureTheory.Lp.pow_mul_meas_ge_le_norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) (hp_ne_zero : p 0) (hp_ne_top : p ) (ε : ENNReal) :
                                              (ε * μ {x : α | ε f x‖₊ ^ p.toReal}) ^ (1 / p.toReal) ENNReal.ofReal f
                                              theorem MeasureTheory.Lp.mul_meas_ge_le_pow_norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) (hp_ne_zero : p 0) (hp_ne_top : p ) (ε : ENNReal) :
                                              ε * μ {x : α | ε f x‖₊ ^ p.toReal} ENNReal.ofReal f ^ p.toReal
                                              theorem MeasureTheory.Lp.mul_meas_ge_le_pow_norm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) (hp_ne_zero : p 0) (hp_ne_top : p ) (ε : ENNReal) :
                                              ε ^ p.toReal * μ {x : α | ε f x‖₊} ENNReal.ofReal f ^ p.toReal

                                              A version of Markov's inequality with elements of Lp.

                                              theorem MeasureTheory.Lp.meas_ge_le_mul_pow_norm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (f : (Lp E p μ)) (hp_ne_zero : p 0) (hp_ne_top : p ) {ε : ENNReal} (hε : ε 0) :
                                              μ {x : α | ε f x‖₊} ε⁻¹ ^ p.toReal * ENNReal.ofReal f ^ p.toReal