Documentation

Mathlib.NumberTheory.Chebyshev

Chebyshev functions #

This file defines the Chebyshev functions theta and psi. These give logarithmically weighted sums of primes and prime powers.

Main definitions #

Main results #

Notation #

We introduce the scoped notations θ and ψ in the Chebyshev namespace for the Chebyshev functions.

References #

Parts of this file were upstreamed from the PrimeNumberTheoremAnd project by Kontorovich et al, https://github.com/alexKontorovich/PrimeNumberTheoremAnd.

TODOS #

noncomputable def Chebyshev.psi (x : ) :

The sum of ArithmeticFunction.vonMangoldt over integers n ≤ x.

Equations
Instances For

    The sum of ArithmeticFunction.vonMangoldt over integers n ≤ x.

    Equations
    Instances For
      noncomputable def Chebyshev.theta (x : ) :

      The sum of log p over primes p ≤ x.

      Equations
      Instances For

        The sum of log p over primes p ≤ x.

        Equations
        Instances For
          theorem Chebyshev.psi_eq_zero_of_lt_two {x : } (hx : x < 2) :
          psi x = 0
          theorem Chebyshev.theta_eq_zero_of_lt_two {x : } (hx : x < 2) :
          theta x = 0

          θ x is the log of the product of the primes up to x.

          theorem Chebyshev.theta_le_log4_mul_x {x : } (hx : 0 x) :

          Chebyshev's upper bound: θ x ≤ c x with the constant c = log 4.