Documentation

Mathlib.NumberTheory.NumberField.ClassNumber

Class numbers of number fields #

This file defines the class number of a number field as the (finite) cardinality of the class group of its ring of integers. It also proves some elementary results on the class number.

Main definitions #

noncomputable def NumberField.classNumber (K : Type u_1) [Field K] [NumberField K] :

The class number of a number field is the (finite) cardinality of the class group.

Equations
Instances For

    The class number of a number field is 1 iff the ring of integers is a PID.

    theorem NumberField.exists_ideal_in_class_of_norm_le {K : Type u_1} [Field K] [NumberField K] (C : ClassGroup (RingOfIntegers K)) :
    ∃ (I : (nonZeroDivisors (Ideal (RingOfIntegers K)))), ClassGroup.mk0 I = C (Ideal.absNorm I) (4 / Real.pi) ^ InfinitePlace.nrComplexPlaces K * ((Module.finrank K).factorial / (Module.finrank K) ^ Module.finrank K * |(discr K)|)