Documentation

Mathlib.Probability.Process.Stopping

Stopping times, stopped processes and stopped values #

Definition and properties of stopping times.

Main definitions #

Main results #

Tags #

stopping time, stochastic process

Stopping times #

def MeasureTheory.IsStoppingTime {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (f : MeasureTheory.Filtration ι m) (τ : Ωι) :

A stopping time with respect to some filtration f is a function τ such that for all i, the preimage of {j | j ≤ i} along τ is measurable with respect to f i.

Intuitively, the stopping time τ describes some stopping rule such that at time i, we may determine it with the information we have at time i.

Equations
Instances For
    theorem MeasureTheory.isStoppingTime_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (f : MeasureTheory.Filtration ι m) (i : ι) :
    MeasureTheory.IsStoppingTime f fun (x : Ω) => i
    theorem MeasureTheory.IsStoppingTime.measurableSet_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_pred {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [PredOrder ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable_range {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [PartialOrder ι] {τ : Ωι} {f : MeasureTheory.Filtration ι m} (hτ : MeasureTheory.IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
    MeasurableSet {ω : Ω | τ ω = i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [PartialOrder ι] {τ : Ωι} {f : MeasureTheory.Filtration ι m} [Countable ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω = i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [PartialOrder ι] {τ : Ωι} {f : MeasureTheory.Filtration ι m} (hτ : MeasureTheory.IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [PartialOrder ι] {τ : Ωι} {f : MeasureTheory.Filtration ι m} [Countable ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable_range {Ω : Type u_1} {m : MeasurableSpace Ω} {ι : Type u_4} [LinearOrder ι] {τ : Ωι} {f : MeasureTheory.Filtration ι m} (hτ : MeasureTheory.IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
    MeasurableSet {ω : Ω | i τ ω}
    theorem MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable {Ω : Type u_1} {m : MeasurableSpace Ω} {ι : Type u_4} [LinearOrder ι] {τ : Ωι} {f : MeasureTheory.Filtration ι m} [Countable ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | i τ ω}
    theorem MeasureTheory.IsStoppingTime.measurableSet_gt {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | i < τ ω}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_isLUB {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) (h_lub : IsLUB (Set.Iio i) i) :
    MeasurableSet {ω : Ω | τ ω < i}

    Auxiliary lemma for MeasureTheory.IsStoppingTime.measurableSet_lt.

    theorem MeasureTheory.IsStoppingTime.measurableSet_lt {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_ge {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | i τ ω}
    theorem MeasureTheory.IsStoppingTime.measurableSet_eq {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω = i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_eq_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) {i j : ι} (hle : i j) :
    MeasurableSet {ω : Ω | τ ω = i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) {i j : ι} (hle : i j) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.isStoppingTime_of_measurableSet_eq {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] [Countable ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : ∀ (i : ι), MeasurableSet {ω : Ω | τ ω = i}) :
    theorem MeasureTheory.IsStoppingTime.max {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ π : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (hπ : MeasureTheory.IsStoppingTime f π) :
    MeasureTheory.IsStoppingTime f fun (ω : Ω) => τ ω π ω
    theorem MeasureTheory.IsStoppingTime.max_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasureTheory.IsStoppingTime f fun (ω : Ω) => τ ω i
    theorem MeasureTheory.IsStoppingTime.min {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ π : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (hπ : MeasureTheory.IsStoppingTime f π) :
    MeasureTheory.IsStoppingTime f fun (ω : Ω) => τ ω π ω
    theorem MeasureTheory.IsStoppingTime.min_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
    MeasureTheory.IsStoppingTime f fun (ω : Ω) => τ ω i
    theorem MeasureTheory.IsStoppingTime.add_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [AddGroup ι] [Preorder ι] [AddRightMono ι] [AddLeftMono ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) {i : ι} (hi : 0 i) :
    MeasureTheory.IsStoppingTime f fun (ω : Ω) => τ ω + i
    theorem MeasureTheory.IsStoppingTime.add_const_nat {Ω : Type u_1} {m : MeasurableSpace Ω} {f : MeasureTheory.Filtration m} {τ : Ω} (hτ : MeasureTheory.IsStoppingTime f τ) {i : } :
    MeasureTheory.IsStoppingTime f fun (ω : Ω) => τ ω + i

    The associated σ-algebra with a stopping time.

    Equations
    • .measurableSpace = { MeasurableSet' := fun (s : Set Ω) => ∀ (i : ι), MeasurableSet (s {ω : Ω | τ ω i}), measurableSet_empty := , measurableSet_compl := , measurableSet_iUnion := }
    Instances For
      theorem MeasureTheory.IsStoppingTime.measurableSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (s : Set Ω) :
      MeasurableSet s ∀ (i : ι), MeasurableSet (s {ω : Ω | τ ω i})
      theorem MeasureTheory.IsStoppingTime.measurableSpace_mono {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ π : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (hπ : MeasureTheory.IsStoppingTime f π) (hle : τ π) :
      .measurableSpace .measurableSpace
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le_of_countable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [Countable ι] (hτ : MeasureTheory.IsStoppingTime f τ) :
      .measurableSpace m
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [Filter.atTop.IsCountablyGenerated] [Filter.atTop.NeBot] (hτ : MeasureTheory.IsStoppingTime f τ) :
      .measurableSpace m
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le {Ω : Type u_1} {m : MeasurableSpace Ω} {ι : Type u_4} [SemilatticeSup ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [Filter.atTop.IsCountablyGenerated] (hτ : MeasureTheory.IsStoppingTime f τ) :
      .measurableSpace m
      @[simp]
      theorem MeasureTheory.IsStoppingTime.measurableSpace_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (f : MeasureTheory.Filtration ι m) (i : ι) :
      .measurableSpace = f i
      theorem MeasureTheory.IsStoppingTime.measurableSet_inter_eq_iff {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (s : Set Ω) (i : ι) :
      MeasurableSet (s {ω : Ω | τ ω = i}) MeasurableSet (s {ω : Ω | τ ω = i})
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le_of_le_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) {i : ι} (hτ_le : ∀ (ω : Ω), τ ω i) :
      .measurableSpace f i
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le_of_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) {n : ι} (hτ_le : ∀ (ω : Ω), τ ω n) :
      .measurableSpace m
      theorem MeasureTheory.IsStoppingTime.le_measurableSpace_of_const_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) {i : ι} (hτ_le : ∀ (ω : Ω), i τ ω) :
      f i .measurableSpace
      instance MeasureTheory.IsStoppingTime.sigmaFinite_stopping_time {Ω : Type u_1} {m : MeasurableSpace Ω} {ι : Type u_4} [SemilatticeSup ι] [OrderBot ι] [Filter.atTop.IsCountablyGenerated] {μ : MeasureTheory.Measure Ω} {f : MeasureTheory.Filtration ι m} {τ : Ωι} [MeasureTheory.SigmaFiniteFiltration μ f] (hτ : MeasureTheory.IsStoppingTime f τ) :
      Equations
      • =
      instance MeasureTheory.IsStoppingTime.sigmaFinite_stopping_time_of_le {Ω : Type u_1} {m : MeasurableSpace Ω} {ι : Type u_4} [SemilatticeSup ι] [OrderBot ι] {μ : MeasureTheory.Measure Ω} {f : MeasureTheory.Filtration ι m} {τ : Ωι} [MeasureTheory.SigmaFiniteFiltration μ f] (hτ : MeasureTheory.IsStoppingTime f τ) {n : ι} (hτ_le : ∀ (ω : Ω), τ ω n) :
      Equations
      • =
      theorem MeasureTheory.IsStoppingTime.measurableSet_le' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_gt' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | i < τ ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_eq' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω = i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_ge' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | i τ ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_lt' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω < i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable_range' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
      MeasurableSet {ω : Ω | τ ω = i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [Countable ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω = i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable_range' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
      MeasurableSet {ω : Ω | i τ ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [Countable ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | i τ ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
      MeasurableSet {ω : Ω | τ ω < i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [Countable ι] (hτ : MeasureTheory.IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω < i}
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le_of_countable_range {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) :
      .measurableSpace m
      theorem MeasureTheory.IsStoppingTime.measurable_of_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} [TopologicalSpace ι] [MeasurableSpace ι] [BorelSpace ι] [OrderTopology ι] [SecondCountableTopology ι] (hτ : MeasureTheory.IsStoppingTime f τ) {i : ι} (hτ_le : ∀ (ω : Ω), τ ω i) :
      theorem MeasureTheory.IsStoppingTime.measurableSpace_min {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ π : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (hπ : MeasureTheory.IsStoppingTime f π) :
      .measurableSpace = .measurableSpace .measurableSpace
      theorem MeasureTheory.IsStoppingTime.measurableSpace_min_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) {i : ι} :
      .measurableSpace = .measurableSpace f i
      theorem MeasureTheory.IsStoppingTime.measurableSet_inter_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ π : Ωι} [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] [MeasurableSpace ι] [BorelSpace ι] (hτ : MeasureTheory.IsStoppingTime f τ) (hπ : MeasureTheory.IsStoppingTime f π) (s : Set Ω) (hs : MeasurableSet s) :
      MeasurableSet (s {ω : Ω | τ ω π ω})
      theorem MeasureTheory.IsStoppingTime.measurableSet_inter_le_iff {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ π : Ωι} [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] [MeasurableSpace ι] [BorelSpace ι] (hτ : MeasureTheory.IsStoppingTime f τ) (hπ : MeasureTheory.IsStoppingTime f π) (s : Set Ω) :
      MeasurableSet (s {ω : Ω | τ ω π ω}) MeasurableSet (s {ω : Ω | τ ω π ω})
      theorem MeasureTheory.IsStoppingTime.measurableSet_inter_le_const_iff {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : MeasureTheory.Filtration ι m} {τ : Ωι} (hτ : MeasureTheory.IsStoppingTime f τ) (s : Set Ω) (i : ι) :
      MeasurableSet (s {ω : Ω | τ ω i}) MeasurableSet (s {ω : Ω | τ ω i})

      Stopped value and stopped process #

      def MeasureTheory.stoppedValue {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} (u : ιΩβ) (τ : Ωι) :
      Ωβ

      Given a map u : ι → Ω → E, its stopped value with respect to the stopping time τ is the map x ↦ u (τ ω) ω.

      Equations
      Instances For
        theorem MeasureTheory.stoppedValue_const {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} (u : ιΩβ) (i : ι) :
        (MeasureTheory.stoppedValue u fun (x : Ω) => i) = u i
        def MeasureTheory.stoppedProcess {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [LinearOrder ι] (u : ιΩβ) (τ : Ωι) :
        ιΩβ

        Given a map u : ι → Ω → E, the stopped process with respect to τ is u i ω if i ≤ τ ω, and u (τ ω) ω otherwise.

        Intuitively, the stopped process stops evolving once the stopping time has occurred.

        Equations
        Instances For
          theorem MeasureTheory.stoppedProcess_eq_stoppedValue {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [LinearOrder ι] {u : ιΩβ} {τ : Ωι} :
          MeasureTheory.stoppedProcess u τ = fun (i : ι) => MeasureTheory.stoppedValue u fun (ω : Ω) => i τ ω
          theorem MeasureTheory.stoppedValue_stoppedProcess {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [LinearOrder ι] {u : ιΩβ} {τ σ : Ωι} :
          theorem MeasureTheory.stoppedProcess_eq_of_le {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [LinearOrder ι] {u : ιΩβ} {τ : Ωι} {i : ι} {ω : Ω} (h : i τ ω) :
          theorem MeasureTheory.stoppedProcess_eq_of_ge {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [LinearOrder ι] {u : ιΩβ} {τ : Ωι} {i : ι} {ω : Ω} (h : τ ω i) :
          MeasureTheory.stoppedProcess u τ i ω = u (τ ω) ω
          theorem MeasureTheory.stronglyMeasurable_stoppedValue_of_le {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] [MeasurableSpace ι] [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] [BorelSpace ι] [TopologicalSpace β] {u : ιΩβ} {τ : Ωι} {f : MeasureTheory.Filtration ι m} (h : MeasureTheory.ProgMeasurable f u) (hτ : MeasureTheory.IsStoppingTime f τ) {n : ι} (hτ_le : ∀ (ω : Ω), τ ω n) :
          theorem MeasureTheory.stoppedValue_eq_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {τ : Ωι} {E : Type u_4} {u : ιΩE} [AddCommMonoid E] {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω s) :
          MeasureTheory.stoppedValue u τ = is, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.stoppedValue_eq' {Ω : Type u_1} {ι : Type u_3} {τ : Ωι} {E : Type u_4} {u : ιΩE} [Preorder ι] [LocallyFiniteOrderBot ι] [AddCommMonoid E] {N : ι} (hbdd : ∀ (ω : Ω), τ ω N) :
          MeasureTheory.stoppedValue u τ = iFinset.Iic N, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.stoppedProcess_eq_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {τ : Ωι} {E : Type u_4} {u : ιΩE} [LinearOrder ι] [AddCommMonoid E] {s : Finset ι} (n : ι) (hbdd : ∀ (ω : Ω), τ ω < nτ ω s) :
          MeasureTheory.stoppedProcess u τ n = {a : Ω | n τ a}.indicator (u n) + iFinset.filter (fun (x : ι) => x < n) s, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.stoppedProcess_eq'' {Ω : Type u_1} {ι : Type u_3} {τ : Ωι} {E : Type u_4} {u : ιΩE} [LinearOrder ι] [LocallyFiniteOrderBot ι] [AddCommMonoid E] (n : ι) :
          MeasureTheory.stoppedProcess u τ n = {a : Ω | n τ a}.indicator (u n) + iFinset.Iio n, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.memℒp_stoppedValue_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {τ : Ωι} {E : Type u_4} {p : ENNReal} {u : ιΩE} [PartialOrder ι] {ℱ : MeasureTheory.Filtration ι m} [NormedAddCommGroup E] (hτ : MeasureTheory.IsStoppingTime τ) (hu : ∀ (n : ι), MeasureTheory.Memℒp (u n) p μ) {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω s) :
          theorem MeasureTheory.memℒp_stoppedValue {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {τ : Ωι} {E : Type u_4} {p : ENNReal} {u : ιΩE} [PartialOrder ι] {ℱ : MeasureTheory.Filtration ι m} [NormedAddCommGroup E] [LocallyFiniteOrderBot ι] (hτ : MeasureTheory.IsStoppingTime τ) (hu : ∀ (n : ι), MeasureTheory.Memℒp (u n) p μ) {N : ι} (hbdd : ∀ (ω : Ω), τ ω N) :
          theorem MeasureTheory.integrable_stoppedValue_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {τ : Ωι} {E : Type u_4} {u : ιΩE} [PartialOrder ι] {ℱ : MeasureTheory.Filtration ι m} [NormedAddCommGroup E] (hτ : MeasureTheory.IsStoppingTime τ) (hu : ∀ (n : ι), MeasureTheory.Integrable (u n) μ) {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω s) :
          theorem MeasureTheory.integrable_stoppedValue {Ω : Type u_1} (ι : Type u_3) {m : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {τ : Ωι} {E : Type u_4} {u : ιΩE} [PartialOrder ι] {ℱ : MeasureTheory.Filtration ι m} [NormedAddCommGroup E] [LocallyFiniteOrderBot ι] (hτ : MeasureTheory.IsStoppingTime τ) (hu : ∀ (n : ι), MeasureTheory.Integrable (u n) μ) {N : ι} (hbdd : ∀ (ω : Ω), τ ω N) :
          theorem MeasureTheory.memℒp_stoppedProcess_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {τ : Ωι} {E : Type u_4} {p : ENNReal} {u : ιΩE} [LinearOrder ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] {ℱ : MeasureTheory.Filtration ι m} [NormedAddCommGroup E] (hτ : MeasureTheory.IsStoppingTime τ) (hu : ∀ (n : ι), MeasureTheory.Memℒp (u n) p μ) (n : ι) {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω < nτ ω s) :
          theorem MeasureTheory.memℒp_stoppedProcess {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {τ : Ωι} {E : Type u_4} {p : ENNReal} {u : ιΩE} [LinearOrder ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] {ℱ : MeasureTheory.Filtration ι m} [NormedAddCommGroup E] [LocallyFiniteOrderBot ι] (hτ : MeasureTheory.IsStoppingTime τ) (hu : ∀ (n : ι), MeasureTheory.Memℒp (u n) p μ) (n : ι) :
          theorem MeasureTheory.integrable_stoppedProcess_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {τ : Ωι} {E : Type u_4} {u : ιΩE} [LinearOrder ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] {ℱ : MeasureTheory.Filtration ι m} [NormedAddCommGroup E] (hτ : MeasureTheory.IsStoppingTime τ) (hu : ∀ (n : ι), MeasureTheory.Integrable (u n) μ) (n : ι) {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω < nτ ω s) :
          theorem MeasureTheory.integrable_stoppedProcess {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {τ : Ωι} {E : Type u_4} {u : ιΩE} [LinearOrder ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] {ℱ : MeasureTheory.Filtration ι m} [NormedAddCommGroup E] [LocallyFiniteOrderBot ι] (hτ : MeasureTheory.IsStoppingTime τ) (hu : ∀ (n : ι), MeasureTheory.Integrable (u n) μ) (n : ι) :
          theorem MeasureTheory.Adapted.stoppedProcess {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [TopologicalSpace β] [TopologicalSpace.PseudoMetrizableSpace β] [LinearOrder ι] [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] [MeasurableSpace ι] [BorelSpace ι] {f : MeasureTheory.Filtration ι m} {u : ιΩβ} {τ : Ωι} [TopologicalSpace.MetrizableSpace ι] (hu : MeasureTheory.Adapted f u) (hu_cont : ∀ (ω : Ω), Continuous fun (i : ι) => u i ω) (hτ : MeasureTheory.IsStoppingTime f τ) :

          The stopped process of an adapted process with continuous paths is adapted.

          If the indexing order has the discrete topology, then the stopped process of an adapted process is adapted.

          Filtrations indexed by #

          theorem MeasureTheory.stoppedValue_sub_eq_sum {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ π : Ω} [AddCommGroup β] (hle : τ π) :
          MeasureTheory.stoppedValue u π - MeasureTheory.stoppedValue u τ = fun (ω : Ω) => (∑ iFinset.Ico (τ ω) (π ω), (u (i + 1) - u i)) ω
          theorem MeasureTheory.stoppedValue_sub_eq_sum' {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ π : Ω} [AddCommGroup β] (hle : τ π) {N : } (hbdd : ∀ (ω : Ω), π ω N) :
          MeasureTheory.stoppedValue u π - MeasureTheory.stoppedValue u τ = fun (ω : Ω) => (∑ iFinset.range (N + 1), {ω : Ω | τ ω i i < π ω}.indicator (u (i + 1) - u i)) ω
          theorem MeasureTheory.stoppedValue_eq {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ : Ω} [AddCommMonoid β] {N : } (hbdd : ∀ (ω : Ω), τ ω N) :
          MeasureTheory.stoppedValue u τ = fun (x : Ω) => (∑ iFinset.range (N + 1), {ω : Ω | τ ω = i}.indicator (u i)) x
          theorem MeasureTheory.stoppedProcess_eq {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ : Ω} [AddCommMonoid β] (n : ) :
          MeasureTheory.stoppedProcess u τ n = {a : Ω | n τ a}.indicator (u n) + iFinset.range n, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.stoppedProcess_eq' {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ : Ω} [AddCommMonoid β] (n : ) :
          MeasureTheory.stoppedProcess u τ n = {a : Ω | n + 1 τ a}.indicator (u n) + iFinset.range (n + 1), {a : Ω | τ a = i}.indicator (u i)
          theorem MeasureTheory.IsStoppingTime.piecewise_of_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {𝒢 : MeasureTheory.Filtration ι m} {τ η : Ωι} {i : ι} {s : Set Ω} [DecidablePred fun (x : Ω) => x s] (hτ_st : MeasureTheory.IsStoppingTime 𝒢 τ) (hη_st : MeasureTheory.IsStoppingTime 𝒢 η) (hτ : ∀ (ω : Ω), i τ ω) (hη : ∀ (ω : Ω), i η ω) (hs : MeasurableSet s) :
          MeasureTheory.IsStoppingTime 𝒢 (s.piecewise τ η)

          Given stopping times τ and η which are bounded below, Set.piecewise s τ η is also a stopping time with respect to the same filtration.

          theorem MeasureTheory.isStoppingTime_piecewise_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {𝒢 : MeasureTheory.Filtration ι m} {i j : ι} {s : Set Ω} [DecidablePred fun (x : Ω) => x s] (hij : i j) (hs : MeasurableSet s) :
          MeasureTheory.IsStoppingTime 𝒢 (s.piecewise (fun (x : Ω) => i) fun (x : Ω) => j)
          theorem MeasureTheory.stoppedValue_piecewise_const {Ω : Type u_1} {s : Set Ω} [DecidablePred fun (x : Ω) => x s] {ι' : Type u_4} {i j : ι'} {f : ι'Ω} :
          MeasureTheory.stoppedValue f (s.piecewise (fun (x : Ω) => i) fun (x : Ω) => j) = s.piecewise (f i) (f j)
          theorem MeasureTheory.stoppedValue_piecewise_const' {Ω : Type u_1} {s : Set Ω} [DecidablePred fun (x : Ω) => x s] {ι' : Type u_4} {i j : ι'} {f : ι'Ω} :
          MeasureTheory.stoppedValue f (s.piecewise (fun (x : Ω) => i) fun (x : Ω) => j) = s.indicator (f i) + s.indicator (f j)

          Conditional expectation with respect to the σ-algebra generated by a stopping time #

          theorem MeasureTheory.condexp_stopping_time_ae_eq_restrict_eq_of_countable_range {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ι m} {τ : Ωι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} [MeasureTheory.SigmaFiniteFiltration μ ] (hτ : MeasureTheory.IsStoppingTime τ) (h_countable : (Set.range τ).Countable) [MeasureTheory.SigmaFinite (μ.trim )] (i : ι) :
          MeasureTheory.condexp .measurableSpace μ f =ᵐ[μ.restrict {x : Ω | τ x = i}] MeasureTheory.condexp ( i) μ f
          theorem MeasureTheory.condexp_stopping_time_ae_eq_restrict_eq_of_countable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ι m} {τ : Ωι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} [Countable ι] [MeasureTheory.SigmaFiniteFiltration μ ] (hτ : MeasureTheory.IsStoppingTime τ) [MeasureTheory.SigmaFinite (μ.trim )] (i : ι) :
          MeasureTheory.condexp .measurableSpace μ f =ᵐ[μ.restrict {x : Ω | τ x = i}] MeasureTheory.condexp ( i) μ f
          theorem MeasureTheory.condexp_min_stopping_time_ae_eq_restrict_le_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ι m} {τ : Ωι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} [Filter.atTop.IsCountablyGenerated] (hτ : MeasureTheory.IsStoppingTime τ) (i : ι) [MeasureTheory.SigmaFinite (μ.trim )] :
          MeasureTheory.condexp .measurableSpace μ f =ᵐ[μ.restrict {x : Ω | τ x i}] MeasureTheory.condexp .measurableSpace μ f
          theorem MeasureTheory.condexp_stopping_time_ae_eq_restrict_eq {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ι m} {τ : Ωι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} [Filter.atTop.IsCountablyGenerated] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] [MeasureTheory.SigmaFiniteFiltration μ ] (hτ : MeasureTheory.IsStoppingTime τ) [MeasureTheory.SigmaFinite (μ.trim )] (i : ι) :
          MeasureTheory.condexp .measurableSpace μ f =ᵐ[μ.restrict {x : Ω | τ x = i}] MeasureTheory.condexp ( i) μ f
          theorem MeasureTheory.condexp_min_stopping_time_ae_eq_restrict_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ι m} {τ σ : Ωι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} [Filter.atTop.IsCountablyGenerated] [TopologicalSpace ι] [OrderTopology ι] [MeasurableSpace ι] [SecondCountableTopology ι] [BorelSpace ι] (hτ : MeasureTheory.IsStoppingTime τ) (hσ : MeasureTheory.IsStoppingTime σ) [MeasureTheory.SigmaFinite (μ.trim )] :
          MeasureTheory.condexp .measurableSpace μ f =ᵐ[μ.restrict {x : Ω | τ x σ x}] MeasureTheory.condexp .measurableSpace μ f