Documentation

Mathlib.Probability.Process.Stopping

Stopping times, stopped processes and stopped values #

Definition and properties of stopping times.

Main definitions #

Main results #

Implementation notes #

For a filtration on a type ι, we define stopping times as functions from the measurable space Ω to WithTop ι, which allows stopping times that can take an infinite value, represented by ⊤ : WithTop ι.

This means that if we have a process X : ι → Ω → β and a stopping time τ : Ω → WithTop ι, then to consider the value of X at the stopping time τ ω, we need to write X (τ ω).untopA ω, in which (τ ω).untopA is the value of τ ω in ι if τ ω ≠ ⊤ and some arbitrary value if τ ω = ⊤.

While indexing would be more convenient if we defined stopping times as functions from Ω to ι, this would prevent us from using stopping times as in standard mathematical literature, where a typical example of stopping time is the first time an event occurs, which may never happen. Consider for example the first time a coin lands heads when flipping it infinitely many times: this is almost surely finite, but possibly infinite. We could also not use a function Ω → ι with arbitrary value for the infinite case, because this would be incompatible with the stopping time property.

Tags #

stopping time, stochastic process

Stopping times #

def MeasureTheory.IsStoppingTime {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (f : Filtration ι m) (τ : ΩWithTop ι) :

A stopping time with respect to some filtration f is a function τ such that for all i, the preimage of {j | j ≤ i} along τ is measurable with respect to f i.

Intuitively, the stopping time τ describes some stopping rule such that at time i, we may determine it with the information we have at time i.

Equations
Instances For
    theorem MeasureTheory.isStoppingTime_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (f : Filtration ι m) (i : ι) :
    IsStoppingTime f fun (x : Ω) => i
    theorem MeasureTheory.IsStoppingTime.measurableSet_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_pred {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [PredOrder ι] ( : IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable_range {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [PartialOrder ι] {τ : ΩWithTop ι} {f : Filtration ι m} ( : IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
    MeasurableSet {ω : Ω | τ ω = i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [PartialOrder ι] {τ : ΩWithTop ι} {f : Filtration ι m} [Countable ι] ( : IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω = i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [PartialOrder ι] {τ : ΩWithTop ι} {f : Filtration ι m} ( : IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [PartialOrder ι] {τ : ΩWithTop ι} {f : Filtration ι m} [Countable ι] ( : IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable_range {Ω : Type u_1} {m : MeasurableSpace Ω} {ι : Type u_4} [LinearOrder ι] {τ : ΩWithTop ι} {f : Filtration ι m} ( : IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
    MeasurableSet {ω : Ω | i τ ω}
    theorem MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable {Ω : Type u_1} {m : MeasurableSpace Ω} {ι : Type u_4} [LinearOrder ι] {τ : ΩWithTop ι} {f : Filtration ι m} [Countable ι] ( : IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | i τ ω}
    theorem MeasureTheory.IsStoppingTime.measurableSet_gt {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | i < τ ω}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_isLUB {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] ( : IsStoppingTime f τ) (i : ι) (h_lub : IsLUB (Set.Iio i) i) :
    MeasurableSet {ω : Ω | τ ω < i}

    Auxiliary lemma for MeasureTheory.IsStoppingTime.measurableSet_lt.

    theorem MeasureTheory.IsStoppingTime.measurableSet_lt {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] ( : IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_ge {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] ( : IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | i τ ω}
    theorem MeasureTheory.IsStoppingTime.measurableSet_eq {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] ( : IsStoppingTime f τ) (i : ι) :
    MeasurableSet {ω : Ω | τ ω = i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_eq_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] ( : IsStoppingTime f τ) {i j : ι} (hle : i j) :
    MeasurableSet {ω : Ω | τ ω = i}
    theorem MeasureTheory.IsStoppingTime.measurableSet_lt_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] ( : IsStoppingTime f τ) {i j : ι} (hle : i j) :
    MeasurableSet {ω : Ω | τ ω < i}
    theorem MeasureTheory.isStoppingTime_of_measurableSet_eq {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] [Countable ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : ∀ (i : ι), MeasurableSet {ω : Ω | τ ω = i}) :
    theorem MeasureTheory.IsStoppingTime.max {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
    IsStoppingTime f fun (ω : Ω) => max (τ ω) (π ω)
    theorem MeasureTheory.IsStoppingTime.max_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (i : ι) :
    IsStoppingTime f fun (ω : Ω) => max (τ ω) i
    theorem MeasureTheory.IsStoppingTime.min {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
    IsStoppingTime f fun (ω : Ω) => min (τ ω) (π ω)
    theorem MeasureTheory.IsStoppingTime.min_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (i : ι) :
    IsStoppingTime f fun (ω : Ω) => min (τ ω) i
    theorem MeasureTheory.IsStoppingTime.add_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [AddGroup ι] [Preorder ι] [AddRightMono ι] [AddLeftMono ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) {i : ι} (hi : 0 i) :
    IsStoppingTime f fun (ω : Ω) => τ ω + i
    theorem MeasureTheory.IsStoppingTime.add_const_nat {Ω : Type u_1} {m : MeasurableSpace Ω} {f : Filtration m} {τ : ΩWithTop } ( : IsStoppingTime f τ) {i : } :
    IsStoppingTime f fun (ω : Ω) => τ ω + i
    theorem MeasureTheory.IsStoppingTime.add {Ω : Type u_1} {m : MeasurableSpace Ω} {f : Filtration m} {τ π : ΩWithTop } ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
    IsStoppingTime f (τ + π)
    def MeasureTheory.IsStoppingTime.measurableSpace {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) :

    The associated σ-algebra with a stopping time.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem MeasureTheory.IsStoppingTime.measurableSet {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (s : Set Ω) :
      MeasurableSet s MeasurableSet s ∀ (i : ι), MeasurableSet (s {ω : Ω | τ ω i})
      theorem MeasureTheory.IsStoppingTime.measurableSpace_mono {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} ( : IsStoppingTime f τ) ( : IsStoppingTime f π) (hle : τ π) :
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) :
      @[deprecated MeasureTheory.IsStoppingTime.measurableSpace_le (since := "2025-09-08")]
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le_of_countable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) :

      Alias of MeasureTheory.IsStoppingTime.measurableSpace_le.

      @[deprecated MeasureTheory.IsStoppingTime.measurableSpace_le (since := "2025-09-08")]
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le_of_countable_range {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) :

      Alias of MeasureTheory.IsStoppingTime.measurableSpace_le.

      @[simp]
      theorem MeasureTheory.IsStoppingTime.measurableSpace_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] (f : Filtration ι m) (i : ι) :
      .measurableSpace = f i
      theorem MeasureTheory.IsStoppingTime.measurableSet_inter_eq_iff {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (s : Set Ω) (i : ι) :
      MeasurableSet (s {ω : Ω | τ ω = i}) MeasurableSet (s {ω : Ω | τ ω = i})
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le_of_le_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) {i : ι} (hτ_le : ∀ (ω : Ω), τ ω i) :
      .measurableSpace f i
      theorem MeasureTheory.IsStoppingTime.measurableSpace_le_of_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) {n : ι} (hτ_le : ∀ (ω : Ω), τ ω n) :
      theorem MeasureTheory.IsStoppingTime.le_measurableSpace_of_const_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) {i : ι} (hτ_le : ∀ (ω : Ω), i τ ω) :
      f i .measurableSpace
      instance MeasureTheory.IsStoppingTime.sigmaFinite_stopping_time {Ω : Type u_1} {m : MeasurableSpace Ω} {ι : Type u_4} [SemilatticeSup ι] [OrderBot ι] {μ : Measure Ω} {f : Filtration ι m} {τ : ΩWithTop ι} [SigmaFiniteFiltration μ f] ( : IsStoppingTime f τ) :
      SigmaFinite (μ.trim )
      instance MeasureTheory.IsStoppingTime.sigmaFinite_stopping_time_of_le {Ω : Type u_1} {m : MeasurableSpace Ω} {ι : Type u_4} [SemilatticeSup ι] [OrderBot ι] {μ : Measure Ω} {f : Filtration ι m} {τ : ΩWithTop ι} [SigmaFiniteFiltration μ f] ( : IsStoppingTime f τ) {n : ι} (hτ_le : ∀ (ω : Ω), τ ω n) :
      SigmaFinite (μ.trim )
      theorem MeasureTheory.IsStoppingTime.measurableSet_le' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_gt' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | i < τ ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_eq' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] ( : IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω = i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_ge' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] ( : IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | i τ ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_lt' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] ( : IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω < i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable_range' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
      MeasurableSet {ω : Ω | τ ω = i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [Countable ι] ( : IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω = i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable_range' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
      MeasurableSet {ω : Ω | i τ ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [Countable ι] ( : IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | i τ ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (h_countable : (Set.range τ).Countable) (i : ι) :
      MeasurableSet {ω : Ω | τ ω < i}
      theorem MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable' {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [Countable ι] ( : IsStoppingTime f τ) (i : ι) :
      MeasurableSet {ω : Ω | τ ω < i}
      theorem MeasureTheory.IsStoppingTime.measurable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] ( : IsStoppingTime f τ) :
      theorem MeasureTheory.IsStoppingTime.measurable_of_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] ( : IsStoppingTime f τ) {i : ι} (hτ_le : ∀ (ω : Ω), τ ω i) :
      theorem MeasureTheory.IsStoppingTime.measurableSpace_min {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
      theorem MeasureTheory.IsStoppingTime.measurableSet_min_iff {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} ( : IsStoppingTime f τ) ( : IsStoppingTime f π) (s : Set Ω) :
      theorem MeasureTheory.IsStoppingTime.measurableSpace_min_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) {i : ι} :
      .measurableSpace = .measurableSpacef i
      theorem MeasureTheory.IsStoppingTime.measurableSet_min_const_iff {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (s : Set Ω) {i : ι} :
      theorem MeasureTheory.IsStoppingTime.measurableSet_inter_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] ( : IsStoppingTime f τ) ( : IsStoppingTime f π) (s : Set Ω) (hs : MeasurableSet s) :
      MeasurableSet (s {ω : Ω | τ ω π ω})
      theorem MeasureTheory.IsStoppingTime.measurableSet_inter_le_iff {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] ( : IsStoppingTime f τ) ( : IsStoppingTime f π) (s : Set Ω) :
      MeasurableSet (s {ω : Ω | τ ω π ω}) MeasurableSet (s {ω : Ω | τ ω π ω})
      theorem MeasureTheory.IsStoppingTime.measurableSet_inter_le_const_iff {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) (s : Set Ω) (i : ι) :
      MeasurableSet (s {ω : Ω | τ ω i}) MeasurableSet (s {ω : Ω | τ ω i})
      theorem MeasureTheory.IsStoppingTime.measurableSet_le_stopping_time {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
      MeasurableSet {ω : Ω | τ ω π ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_stopping_time_le_min {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
      MeasurableSet {ω : Ω | τ ω π ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_stopping_time_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
      MeasurableSet {ω : Ω | τ ω π ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_eq_stopping_time_min {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
      MeasurableSet {ω : Ω | τ ω = π ω}
      theorem MeasureTheory.IsStoppingTime.measurableSet_eq_stopping_time {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
      MeasurableSet {ω : Ω | τ ω = π ω}
      @[deprecated MeasureTheory.IsStoppingTime.measurableSet_eq_stopping_time (since := "2025-09-08")]
      theorem MeasureTheory.IsStoppingTime.measurableSet_eq_stopping_time_of_countable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {f : Filtration ι m} {τ π : ΩWithTop ι} [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] ( : IsStoppingTime f τ) ( : IsStoppingTime f π) :
      MeasurableSet {ω : Ω | τ ω = π ω}

      Alias of MeasureTheory.IsStoppingTime.measurableSet_eq_stopping_time.

      Stopped value and stopped process #

      noncomputable def MeasureTheory.stoppedValue {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] (u : ιΩβ) (τ : ΩWithTop ι) :
      Ωβ

      Given a map u : ι → Ω → E, its stopped value with respect to the stopping time τ is the map x ↦ u (τ ω) ω.

      Equations
      Instances For
        theorem MeasureTheory.stoppedValue_const {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] (u : ιΩβ) (i : ι) :
        (stoppedValue u fun (x : Ω) => i) = u i
        noncomputable def MeasureTheory.stoppedProcess {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] (u : ιΩβ) (τ : ΩWithTop ι) :
        ιΩβ

        Given a map u : ι → Ω → E, the stopped process with respect to τ is u i ω if i ≤ τ ω, and u (τ ω) ω otherwise.

        Intuitively, the stopped process stops evolving once the stopping time has occurred.

        Equations
        Instances For
          theorem MeasureTheory.stoppedProcess_eq_stoppedValue {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ : ΩWithTop ι} :
          stoppedProcess u τ = fun (i : ι) => stoppedValue u fun (ω : Ω) => min (↑i) (τ ω)
          theorem MeasureTheory.stoppedProcess_eq_stoppedValue_apply {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ : ΩWithTop ι} (i : ι) (ω : Ω) :
          stoppedProcess u τ i ω = stoppedValue u (fun (ω : Ω) => min (↑i) (τ ω)) ω
          theorem MeasureTheory.stoppedValue_stoppedProcess {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ σ : ΩWithTop ι} :
          stoppedValue (stoppedProcess u τ) σ = fun (ω : Ω) => if σ ω then stoppedValue u (fun (ω : Ω) => min (σ ω) (τ ω)) ω else stoppedValue u (fun (ω : Ω) => min (↑(Classical.arbitrary ι)) (τ ω)) ω
          theorem MeasureTheory.stoppedValue_stoppedProcess_apply {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ σ : ΩWithTop ι} {ω : Ω} ( : σ ω ) :
          stoppedValue (stoppedProcess u τ) σ ω = stoppedValue u (fun (ω : Ω) => min (σ ω) (τ ω)) ω
          theorem MeasureTheory.stoppedValue_stoppedProcess_ae_eq {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ σ : ΩWithTop ι} {μ : Measure Ω} ( : ∀ᵐ (ω : Ω) μ, σ ω ) :
          stoppedValue (stoppedProcess u τ) σ =ᶠ[ae μ] stoppedValue u fun (ω : Ω) => min (σ ω) (τ ω)
          theorem MeasureTheory.stoppedProcess_eq_of_le {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ : ΩWithTop ι} {i : ι} {ω : Ω} (h : i τ ω) :
          stoppedProcess u τ i ω = u i ω
          theorem MeasureTheory.stoppedProcess_eq_of_ge {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ : ΩWithTop ι} {i : ι} {ω : Ω} (h : τ ω i) :
          stoppedProcess u τ i ω = u (τ ω).untopA ω
          theorem MeasureTheory.stoppedProcess_indicator_comm {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ : ΩWithTop ι} [Zero β] {s : Set Ω} (i : ι) :
          stoppedProcess (fun (i : ι) => s.indicator (u i)) τ i = s.indicator (stoppedProcess u τ i)
          theorem MeasureTheory.stoppedProcess_indicator_comm' {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ : ΩWithTop ι} [Zero β] {s : Set Ω} :
          stoppedProcess (fun (i : ι) => s.indicator (u i)) τ = fun (i : ι) => s.indicator (stoppedProcess u τ i)
          @[simp]
          theorem MeasureTheory.stoppedProcess_stoppedProcess {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ σ : ΩWithTop ι} :
          theorem MeasureTheory.stoppedProcess_stoppedProcess' {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ σ : ΩWithTop ι} :
          stoppedProcess (stoppedProcess u τ) σ = stoppedProcess u fun (ω : Ω) => min (σ ω) (τ ω)
          theorem MeasureTheory.stoppedProcess_stoppedProcess_of_le_right {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ σ : ΩWithTop ι} (h : σ τ) :
          theorem MeasureTheory.stoppedProcess_stoppedProcess_of_le_left {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ σ : ΩWithTop ι} (h : τ σ) :
          theorem MeasureTheory.progMeasurable_min_stopping_time {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] [LinearOrder ι] {τ : ΩWithTop ι} [MeasurableSpace ι] [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] [BorelSpace ι] {f : Filtration ι m} [TopologicalSpace.PseudoMetrizableSpace ι] ( : IsStoppingTime f τ) :
          ProgMeasurable f fun (i : ι) (ω : Ω) => (min (↑i) (τ ω)).untopA
          theorem MeasureTheory.stronglyMeasurable_stoppedValue_of_le {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ : ΩWithTop ι} [MeasurableSpace ι] [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] [BorelSpace ι] [TopologicalSpace β] {f : Filtration ι m} (h : ProgMeasurable f u) ( : IsStoppingTime f τ) {n : ι} (hτ_le : ∀ (ω : Ω), τ ω n) :
          theorem MeasureTheory.measurableSet_preimage_stoppedValue_inter {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ : ΩWithTop ι} [MeasurableSpace ι] [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] [BorelSpace ι] [TopologicalSpace β] {f : Filtration ι m} [TopologicalSpace.PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β] (hf_prog : ProgMeasurable f u) ( : IsStoppingTime f τ) {t : Set β} (ht : MeasurableSet t) (i : ι) :
          MeasurableSet (stoppedValue u τ ⁻¹' t {ω : Ω | τ ω i})
          theorem MeasureTheory.measurable_stoppedValue {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] [LinearOrder ι] {u : ιΩβ} {τ : ΩWithTop ι} [MeasurableSpace ι] [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] [BorelSpace ι] [TopologicalSpace β] {f : Filtration ι m} [TopologicalSpace.PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β] (hf_prog : ProgMeasurable f u) ( : IsStoppingTime f τ) :
          theorem MeasureTheory.stoppedValue_eq_of_mem_finset {Ω : Type u_1} {ι : Type u_3} [Nonempty ι] {τ : ΩWithTop ι} {E : Type u_4} {u : ιΩE} [AddCommMonoid E] {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω WithTop.some '' s) :
          stoppedValue u τ = is, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.stoppedValue_eq' {Ω : Type u_1} {ι : Type u_3} [Nonempty ι] {τ : ΩWithTop ι} {E : Type u_4} {u : ιΩE} [Preorder ι] [LocallyFiniteOrderBot ι] [AddCommMonoid E] {N : ι} (hbdd : ∀ (ω : Ω), τ ω N) :
          stoppedValue u τ = iFinset.Iic N, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.stoppedProcess_eq_of_mem_finset {Ω : Type u_1} {ι : Type u_3} [Nonempty ι] {τ : ΩWithTop ι} {E : Type u_4} {u : ιΩE} [LinearOrder ι] [AddCommMonoid E] {s : Finset ι} (n : ι) (hbdd : ∀ (ω : Ω), τ ω < nτ ω WithTop.some '' s) :
          stoppedProcess u τ n = {a : Ω | n τ a}.indicator (u n) + is with i < n, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.stoppedProcess_eq'' {Ω : Type u_1} {ι : Type u_3} [Nonempty ι] {τ : ΩWithTop ι} {E : Type u_4} {u : ιΩE} [LinearOrder ι] [LocallyFiniteOrderBot ι] [AddCommMonoid E] (n : ι) :
          stoppedProcess u τ n = {a : Ω | n τ a}.indicator (u n) + iFinset.Iio n, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.memLp_stoppedValue_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] {μ : Measure Ω} {τ : ΩWithTop ι} {E : Type u_4} {p : ENNReal} {u : ιΩE} [PartialOrder ι] { : Filtration ι m} [NormedAddCommGroup E] ( : IsStoppingTime τ) (hu : ∀ (n : ι), MemLp (u n) p μ) {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω WithTop.some '' s) :
          MemLp (stoppedValue u τ) p μ
          theorem MeasureTheory.memLp_stoppedValue {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] {μ : Measure Ω} {τ : ΩWithTop ι} {E : Type u_4} {p : ENNReal} {u : ιΩE} [PartialOrder ι] { : Filtration ι m} [NormedAddCommGroup E] [LocallyFiniteOrderBot ι] ( : IsStoppingTime τ) (hu : ∀ (n : ι), MemLp (u n) p μ) {N : ι} (hbdd : ∀ (ω : Ω), τ ω N) :
          MemLp (stoppedValue u τ) p μ
          theorem MeasureTheory.integrable_stoppedValue_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] {μ : Measure Ω} {τ : ΩWithTop ι} {E : Type u_4} {u : ιΩE} [PartialOrder ι] { : Filtration ι m} [NormedAddCommGroup E] ( : IsStoppingTime τ) (hu : ∀ (n : ι), Integrable (u n) μ) {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω WithTop.some '' s) :
          theorem MeasureTheory.integrable_stoppedValue {Ω : Type u_1} (ι : Type u_3) {m : MeasurableSpace Ω} [Nonempty ι] {μ : Measure Ω} {τ : ΩWithTop ι} {E : Type u_4} {u : ιΩE} [PartialOrder ι] { : Filtration ι m} [NormedAddCommGroup E] [LocallyFiniteOrderBot ι] ( : IsStoppingTime τ) (hu : ∀ (n : ι), Integrable (u n) μ) {N : ι} (hbdd : ∀ (ω : Ω), τ ω N) :
          theorem MeasureTheory.memLp_stoppedProcess_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] {μ : Measure Ω} {τ : ΩWithTop ι} {E : Type u_4} {p : ENNReal} {u : ιΩE} [LinearOrder ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] { : Filtration ι m} [NormedAddCommGroup E] ( : IsStoppingTime τ) (hu : ∀ (n : ι), MemLp (u n) p μ) (n : ι) {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω < nτ ω WithTop.some '' s) :
          MemLp (stoppedProcess u τ n) p μ
          theorem MeasureTheory.memLp_stoppedProcess {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] {μ : Measure Ω} {τ : ΩWithTop ι} {E : Type u_4} {p : ENNReal} {u : ιΩE} [LinearOrder ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] { : Filtration ι m} [NormedAddCommGroup E] [LocallyFiniteOrderBot ι] ( : IsStoppingTime τ) (hu : ∀ (n : ι), MemLp (u n) p μ) (n : ι) :
          MemLp (stoppedProcess u τ n) p μ
          theorem MeasureTheory.integrable_stoppedProcess_of_mem_finset {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] {μ : Measure Ω} {τ : ΩWithTop ι} {E : Type u_4} {u : ιΩE} [LinearOrder ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] { : Filtration ι m} [NormedAddCommGroup E] ( : IsStoppingTime τ) (hu : ∀ (n : ι), Integrable (u n) μ) (n : ι) {s : Finset ι} (hbdd : ∀ (ω : Ω), τ ω < nτ ω WithTop.some '' s) :
          theorem MeasureTheory.integrable_stoppedProcess {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Nonempty ι] {μ : Measure Ω} {τ : ΩWithTop ι} {E : Type u_4} {u : ιΩE} [LinearOrder ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] { : Filtration ι m} [NormedAddCommGroup E] [LocallyFiniteOrderBot ι] ( : IsStoppingTime τ) (hu : ∀ (n : ι), Integrable (u n) μ) (n : ι) :
          theorem MeasureTheory.StronglyAdapted.stoppedProcess {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [TopologicalSpace β] [TopologicalSpace.PseudoMetrizableSpace β] [Nonempty ι] [LinearOrder ι] [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] [MeasurableSpace ι] [BorelSpace ι] {f : Filtration ι m} {u : ιΩβ} {τ : ΩWithTop ι} [TopologicalSpace.MetrizableSpace ι] (hu : StronglyAdapted f u) (hu_cont : ∀ (ω : Ω), Continuous fun (i : ι) => u i ω) ( : IsStoppingTime f τ) :

          The stopped process of a strongly adapted process with continuous paths is strongly adapted.

          If the indexing order has the discrete topology, then the stopped process of a strongly adapted process is strongly adapted.

          theorem MeasureTheory.StronglyAdapted.stronglyMeasurable_stoppedProcess {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [TopologicalSpace β] [TopologicalSpace.PseudoMetrizableSpace β] [Nonempty ι] [LinearOrder ι] [TopologicalSpace ι] [SecondCountableTopology ι] [OrderTopology ι] [MeasurableSpace ι] [BorelSpace ι] {f : Filtration ι m} {u : ιΩβ} {τ : ΩWithTop ι} [TopologicalSpace.MetrizableSpace ι] (hu : StronglyAdapted f u) (hu_cont : ∀ (ω : Ω), Continuous fun (i : ι) => u i ω) ( : IsStoppingTime f τ) (n : ι) :

          Filtrations indexed by #

          theorem MeasureTheory.stoppedValue_sub_eq_sum {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ π : Ωℕ∞} [AddCommGroup β] (hle : τ π) ( : ∀ (ω : Ω), (π ω) ) :
          stoppedValue u π - stoppedValue u τ = fun (ω : Ω) => (∑ iFinset.Ico (WithTop.untopA (τ ω)) (WithTop.untopA (π ω)), (u (i + 1) - u i)) ω
          theorem MeasureTheory.stoppedValue_sub_eq_sum' {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ π : Ωℕ∞} [AddCommGroup β] (hle : τ π) {N : } (hbdd : ∀ (ω : Ω), π ω N) :
          stoppedValue u π - stoppedValue u τ = fun (ω : Ω) => (∑ iFinset.range (N + 1), {ω : Ω | τ ω i i < π ω}.indicator (u (i + 1) - u i)) ω
          theorem MeasureTheory.stoppedValue_eq {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ : Ωℕ∞} [AddCommMonoid β] {N : } (hbdd : ∀ (ω : Ω), τ ω N) :
          stoppedValue u τ = fun (x : Ω) => (∑ iFinset.range (N + 1), {ω : Ω | τ ω = i}.indicator (u i)) x
          theorem MeasureTheory.stoppedProcess_eq {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ : Ωℕ∞} [AddCommMonoid β] (n : ) :
          stoppedProcess u τ n = {a : Ω | n τ a}.indicator (u n) + iFinset.range n, {ω : Ω | τ ω = i}.indicator (u i)
          theorem MeasureTheory.stoppedProcess_eq' {Ω : Type u_1} {β : Type u_2} {u : Ωβ} {τ : Ωℕ∞} [AddCommMonoid β] (n : ) :
          stoppedProcess u τ n = {a : Ω | n + 1 τ a}.indicator (u n) + iFinset.range (n + 1), {a : Ω | τ a = i}.indicator (u i)
          theorem MeasureTheory.IsStoppingTime.piecewise_of_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {𝒢 : Filtration ι m} {τ η : ΩWithTop ι} {i : ι} {s : Set Ω} [DecidablePred fun (x : Ω) => x s] (hτ_st : IsStoppingTime 𝒢 τ) (hη_st : IsStoppingTime 𝒢 η) ( : ∀ (ω : Ω), i τ ω) ( : ∀ (ω : Ω), i η ω) (hs : MeasurableSet s) :
          IsStoppingTime 𝒢 (s.piecewise τ η)

          Given stopping times τ and η which are bounded below, Set.piecewise s τ η is also a stopping time with respect to the same filtration.

          theorem MeasureTheory.isStoppingTime_piecewise_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [Preorder ι] {𝒢 : Filtration ι m} {i j : ι} {s : Set Ω} [DecidablePred fun (x : Ω) => x s] (hij : i j) (hs : MeasurableSet s) :
          IsStoppingTime 𝒢 (s.piecewise (fun (x : Ω) => i) fun (x : Ω) => j)
          theorem MeasureTheory.stoppedValue_piecewise_const {Ω : Type u_1} {s : Set Ω} [DecidablePred fun (x : Ω) => x s] {ι' : Type u_4} {α : Type u_5} [Nonempty ι'] {i j : ι'} {f : ι'Ωα} :
          stoppedValue f (s.piecewise (fun (x : Ω) => i) fun (x : Ω) => j) = s.piecewise (f i) (f j)
          theorem MeasureTheory.stoppedValue_piecewise_const' {Ω : Type u_1} {s : Set Ω} [DecidablePred fun (x : Ω) => x s] {ι' : Type u_4} {α : Type u_5} [AddCommGroup α] [Nonempty ι'] {i j : ι'} {f : ι'Ωα} :
          stoppedValue f (s.piecewise (fun (x : Ω) => i) fun (x : Ω) => j) = s.indicator (f i) + s.indicator (f j)

          Conditional expectation with respect to the σ-algebra generated by a stopping time #

          theorem MeasureTheory.condExp_stopping_time_ae_eq_restrict_eq_of_countable_range {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : Measure Ω} { : Filtration ι m} {τ : ΩWithTop ι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} [SigmaFiniteFiltration μ ] ( : IsStoppingTime τ) (h_countable : (Set.range τ).Countable) [SigmaFinite (μ.trim )] (i : ι) :
          μ[f|.measurableSpace] =ᶠ[ae (μ.restrict {x : Ω | τ x = i})] μ[f| i]
          theorem MeasureTheory.condExp_stopping_time_ae_eq_restrict_eq_of_countable {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : Measure Ω} { : Filtration ι m} {τ : ΩWithTop ι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} [Countable ι] [SigmaFiniteFiltration μ ] ( : IsStoppingTime τ) [SigmaFinite (μ.trim )] (i : ι) :
          μ[f|.measurableSpace] =ᶠ[ae (μ.restrict {x : Ω | τ x = i})] μ[f| i]
          theorem MeasureTheory.condExp_min_stopping_time_ae_eq_restrict_le_const {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : Measure Ω} { : Filtration ι m} {τ : ΩWithTop ι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} ( : IsStoppingTime τ) (i : ι) [SigmaFinite (μ.trim )] :
          μ[f|.measurableSpace] =ᶠ[ae (μ.restrict {x : Ω | τ x i})] μ[f|.measurableSpace]
          theorem MeasureTheory.condExp_stopping_time_ae_eq_restrict_eq {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : Measure Ω} { : Filtration ι m} {τ : ΩWithTop ι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] [SigmaFiniteFiltration μ ] ( : IsStoppingTime τ) [SigmaFinite (μ.trim )] (i : ι) :
          μ[f|.measurableSpace] =ᶠ[ae (μ.restrict {x : Ω | τ x = i})] μ[f| i]
          theorem MeasureTheory.condExp_min_stopping_time_ae_eq_restrict_le {Ω : Type u_1} {ι : Type u_3} {m : MeasurableSpace Ω} [LinearOrder ι] {μ : Measure Ω} { : Filtration ι m} {τ σ : ΩWithTop ι} {E : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : ΩE} [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] ( : IsStoppingTime τ) ( : IsStoppingTime σ) [SigmaFinite (μ.trim )] :
          μ[f|.measurableSpace] =ᶠ[ae (μ.restrict {x : Ω | τ x σ x})] μ[f|.measurableSpace]