Documentation

Mathlib.RingTheory.Finiteness.Finsupp

Finiteness of (sub)modules and finitely supported functions #

theorem Submodule.fg_of_fg_map_of_fg_inf_ker {R : Type u_4} {M : Type u_5} {P : Type u_6} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup P] [Module R P] (f : M →ₗ[R] P) {s : Submodule R M} (hs1 : (Submodule.map f s).FG) (hs2 : (s LinearMap.ker f).FG) :
s.FG

If 0 → M' → M → M'' → 0 is exact and M' and M'' are finitely generated then so is M.

theorem Submodule.fg_ker_comp {R : Type u_4} {M : Type u_5} {N : Type u_6} {P : Type u_7} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (hf1 : (LinearMap.ker f).FG) (hf2 : (LinearMap.ker g).FG) (hsur : Function.Surjective f) :
(LinearMap.ker (g ∘ₗ f)).FG

The kernel of the composition of two linear maps is finitely generated if both kernels are and the first morphism is surjective.

instance Module.Finite.finsupp {R : Type u_2} {V : Type u_3} [Ring R] [AddCommGroup V] [Module R V] {ι : Type u_1} [Finite ι] [Module.Finite R V] :