Local properties for semilocal rings #
This file proves some local properties for a semilocal ring R
(a ring with
finitely many maximal ideals).
Main results #
Module.Finite.of_isLocalized_maximal
: A moduleM
over a semilocal ringR
is finite if its localization at every maximal ideal is finite.IsNoetherianRing.of_isLocalization_maximal
: A semilocal ringR
is Noetherian if its localization at every maximal ideal is a Noetherian ring.isPrincipalIdealRing_of_isPrincipalIdealRing_isLocalization_maximal
: A semilocal integral domainA
is a PID if its localization at every maximal ideal is a PID.
theorem
Module.Finite.of_isLocalized_maximal
{R : Type u_1}
[CommSemiring R]
[Finite (MaximalSpectrum R)]
(M : Type u_2)
[AddCommMonoid M]
[Module R M]
(Rₚ : (P : Ideal R) → [P.IsMaximal] → Type u_3)
[(P : Ideal R) → [inst : P.IsMaximal] → CommSemiring (Rₚ P)]
[(P : Ideal R) → [inst : P.IsMaximal] → Algebra R (Rₚ P)]
[∀ (P : Ideal R) [inst : P.IsMaximal], IsLocalization.AtPrime (Rₚ P) P]
(Mₚ : (P : Ideal R) → [P.IsMaximal] → Type u_4)
[(P : Ideal R) → [inst : P.IsMaximal] → AddCommMonoid (Mₚ P)]
[(P : Ideal R) → [inst : P.IsMaximal] → Module R (Mₚ P)]
[(P : Ideal R) → [inst : P.IsMaximal] → Module (Rₚ P) (Mₚ P)]
[∀ (P : Ideal R) [inst : P.IsMaximal], IsScalarTower R (Rₚ P) (Mₚ P)]
(f : (P : Ideal R) → [inst : P.IsMaximal] → M →ₗ[R] Mₚ P)
[∀ (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule P.primeCompl (f P)]
(H : ∀ (P : Ideal R) [inst : P.IsMaximal], Module.Finite (Rₚ P) (Mₚ P))
:
Module.Finite R M
A module M
over a semilocal ring R
is finite if
its localization at every maximal ideal is finite.
theorem
Submodule.fg_of_isLocalized_maximal
{R : Type u_1}
[CommSemiring R]
[Finite (MaximalSpectrum R)]
{M : Type u_2}
[AddCommMonoid M]
[Module R M]
(Rₚ : (P : Ideal R) → [P.IsMaximal] → Type u_3)
[(P : Ideal R) → [inst : P.IsMaximal] → CommSemiring (Rₚ P)]
[(P : Ideal R) → [inst : P.IsMaximal] → Algebra R (Rₚ P)]
[∀ (P : Ideal R) [inst : P.IsMaximal], IsLocalization.AtPrime (Rₚ P) P]
(Mₚ : (P : Ideal R) → [P.IsMaximal] → Type u_4)
[(P : Ideal R) → [inst : P.IsMaximal] → AddCommMonoid (Mₚ P)]
[(P : Ideal R) → [inst : P.IsMaximal] → Module R (Mₚ P)]
[(P : Ideal R) → [inst : P.IsMaximal] → Module (Rₚ P) (Mₚ P)]
[∀ (P : Ideal R) [inst : P.IsMaximal], IsScalarTower R (Rₚ P) (Mₚ P)]
(f : (P : Ideal R) → [inst : P.IsMaximal] → M →ₗ[R] Mₚ P)
[∀ (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule P.primeCompl (f P)]
(N : Submodule R M)
(H : ∀ (P : Ideal R) [inst : P.IsMaximal], (localized' (Rₚ P) P.primeCompl (f P) N).FG)
:
N.FG
A submodule N
of a module M
over a semilocal ring R
is finitely generated if
its localization at every maximal ideal is finitely generated.
theorem
Module.Finite.of_localized_maximal
{R : Type u_1}
[CommSemiring R]
[Finite (MaximalSpectrum R)]
(M : Type u_2)
[AddCommMonoid M]
[Module R M]
(H : ∀ (P : Ideal R) [inst : P.IsMaximal], Module.Finite (Localization P.primeCompl) (LocalizedModule P.primeCompl M))
:
Module.Finite R M
theorem
Submodule.fg_of_localized_maximal
{R : Type u_1}
[CommSemiring R]
[Finite (MaximalSpectrum R)]
{M : Type u_2}
[AddCommMonoid M]
[Module R M]
(N : Submodule R M)
(H : ∀ (P : Ideal R) [inst : P.IsMaximal], (localized P.primeCompl N).FG)
:
N.FG
theorem
IsNoetherianRing.of_isLocalization_maximal
{R : Type u_1}
[CommSemiring R]
[Finite (MaximalSpectrum R)]
(Rₚ : (P : Ideal R) → [P.IsMaximal] → Type u_3)
[(P : Ideal R) → [inst : P.IsMaximal] → CommSemiring (Rₚ P)]
[(P : Ideal R) → [inst : P.IsMaximal] → Algebra R (Rₚ P)]
[∀ (P : Ideal R) [inst : P.IsMaximal], IsLocalization.AtPrime (Rₚ P) P]
(H : ∀ (P : Ideal R) [inst : P.IsMaximal], IsNoetherianRing (Rₚ P))
:
A semilocal ring R
is Noetherian if
its localization at every maximal ideal is a Noetherian ring.
theorem
isPrincipalIdealRing_of_isPrincipalIdealRing_isLocalization_maximal
{R : Type u_1}
[CommRing R]
[Finite (MaximalSpectrum R)]
(Rₚ : (P : Ideal R) → [P.IsMaximal] → Type u_2)
[(P : Ideal R) → [inst : P.IsMaximal] → CommRing (Rₚ P)]
[(P : Ideal R) → [inst : P.IsMaximal] → Algebra R (Rₚ P)]
[∀ (P : Ideal R) [inst : P.IsMaximal], IsLocalization.AtPrime (Rₚ P) P]
[IsDomain R]
(hpid : ∀ (P : Ideal R) [inst : P.IsMaximal], IsPrincipalIdealRing (Rₚ P))
:
A semilocal integral domain A
is a PID if its localization at every maximal ideal is a PID.