Documentation

Mathlib.RingTheory.Localization.AtPrime.Extension

Primes in an extension of localization at prime #

Let R ⊆ S be an extension of Dedekind domains and p be a prime ideal of R. Let Rₚ be the localization of R at the complement of p and Sₚ the localization of S at the (image) of the complement of p.

In this file, we study the relation between the (nonzero) prime ideals of Sₚ and the prime ideals of S above p. In particular, we prove that (under suitable conditions) they are in bijection and that the residual degree and ramification index are preserved by this bijection.

Main definitions and results #

theorem IsLocalization.AtPrime.mem_primesOver_of_isPrime (Rₚ : Type u_3) [CommRing Rₚ] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra Rₚ Sₚ] {Q : Ideal Sₚ} [Q.IsMaximal] [Algebra.IsIntegral Rₚ Sₚ] :

The nonzero prime ideals of Sₚ are prime ideals over the maximal ideal of Rₚ. See Localization.AtPrime.primesOverEquivPrimesOver for the bijection between the prime ideals of Sₚ over the maximal ideal of Rₚ and the primes ideals of S above p.

theorem IsLocalization.AtPrime.liesOver_comap_of_liesOver {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] {T : Type u_5} [CommRing T] [Algebra R T] [Algebra Rₚ T] [Algebra S T] [IsScalarTower R S T] [IsScalarTower R Rₚ T] (Q : Ideal T) [Q.LiesOver (IsLocalRing.maximalIdeal Rₚ)] :
theorem IsLocalization.AtPrime.liesOver_map_of_liesOver {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] (P : Ideal S) [hPp : P.LiesOver p] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] [P.IsPrime] :
theorem IsLocalization.AtPrime.exists_algebraMap_quot_eq_of_mem_quot {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] (P : Ideal S) [hPp : P.LiesOver p] [P.IsMaximal] (x : Sₚ Ideal.map (algebraMap S Sₚ) P) :
∃ (a : S), (algebraMap S (Sₚ Ideal.map (algebraMap S Sₚ) P)) a = x
noncomputable def IsLocalization.AtPrime.equivQuotientMapOfIsMaximal {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] (P : Ideal S) [hPp : P.LiesOver p] [p.IsPrime] [P.IsMaximal] :
S P ≃+* Sₚ Ideal.map (algebraMap S Sₚ) P

The isomorphism S ⧸ P ≃+* Sₚ ⧸ P·Sₚ, where Sₚ is the localization of S at the (image) of the complement of p and P is a maximal ideal of S above p. Note that this isomorphism makes the obvious diagram involving R ⧸ p ≃+* Rₚ ⧸ maximalIdeal Rₚ commute, see IsLocalization.AtPrime.algebraMap_equivQuotMaximalIdeal_symm_apply.

Equations
Instances For
    @[simp]
    theorem IsLocalization.AtPrime.equivQuotientMapOfIsMaximal_apply_mk {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] (P : Ideal S) [hPp : P.LiesOver p] [P.IsMaximal] (x : S) :
    @[simp]
    theorem IsLocalization.AtPrime.algebraMap_equivQuotMaximalIdeal_symm_apply {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] (P : Ideal S) [hPp : P.LiesOver p] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] [p.IsMaximal] [P.IsMaximal] [(Ideal.map (algebraMap S Sₚ) P).LiesOver (IsLocalRing.maximalIdeal Rₚ)] (x : Rₚ IsLocalRing.maximalIdeal Rₚ) :

    The following diagram where the vertical maps are the algebra maps and the horizontal maps are Localization.AtPrime.equivQuotMaximalIdeal.symm and Localization.AtPrime.equivQuotientMapOfIsMaximal.symm commutes:

    Rₚ ⧸ 𝓂 ──▶ R ⧸ p
      │         │
    Sₚ ⧸ 𝒫 ──▶ S ⧸ P
    

    Here, 𝓂 denotes the maximal ideal of Rₚ and 𝒫 the image of P in Sₚ. Note that result is stated in that direction since this is the formulation needed for the proof of Localization.AtPrime.inertiaDeg_map_eq_inertiaDeg.

    @[simp]
    theorem IsLocalization.AtPrime.equivQuotientMapMaximalIdeal_apply_mk {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] [p.IsMaximal] (x : S) :
    theorem IsLocalization.AtPrime.inertiaDeg_map_eq_inertiaDeg {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] (P : Ideal S) [hPp : P.LiesOver p] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] [p.IsMaximal] [P.IsMaximal] [(Ideal.map (algebraMap S Sₚ) P).LiesOver (IsLocalRing.maximalIdeal Rₚ)] :
    theorem IsLocalization.AtPrime.ramificationIdx_map_eq_ramificationIdx {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] (P : Ideal S) [hPp : P.LiesOver p] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] [IsDomain R] [Module.IsTorsionFree R S] [Module.IsTorsionFree R Rₚ] [Module.IsTorsionFree R Sₚ] [Module.IsTorsionFree S Sₚ] [Module.IsTorsionFree Rₚ Sₚ] [IsDedekindDomain S] [IsDedekindDomain Rₚ] [IsDedekindDomain Sₚ] (hp : p ) [P.IsPrime] :
    noncomputable def IsDedekindDomain.primesOverEquivPrimesOver {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] [IsDomain R] [IsDedekindDomain S] [Module.IsTorsionFree R S] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] (hp : p ) :

    For R ⊆ S an extension of Dedekind domains and p a prime ideal of R, the bijection between the primes of S over p and the primes over the maximal ideal of Rₚ in Sₚ where Rₚ and Sₚ are resp. the localizations of R and S at the complement of p.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem IsDedekindDomain.primesOverEquivPrimesOver_apply {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] [IsDomain R] [IsDedekindDomain S] [Module.IsTorsionFree R S] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] (hp : p ) (P : (p.primesOver S)) :
      ((primesOverEquivPrimesOver p Rₚ Sₚ hp) P) = Ideal.map (algebraMap S Sₚ) P
      @[simp]
      theorem IsDedekindDomain.primesOverEquivPrimesOver_symm_apply {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] [IsDomain R] [IsDedekindDomain S] [Module.IsTorsionFree R S] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] (hp : p ) (Q : ((IsLocalRing.maximalIdeal Rₚ).primesOver Sₚ)) :
      ((primesOverEquivPrimesOver p Rₚ Sₚ hp).symm Q) = Ideal.comap (algebraMap S Sₚ) Q
      theorem IsDedekindDomain.primesOverEquivPrimesOver_inertiagDeg_eq {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] [IsDomain R] [IsDedekindDomain S] [Module.IsTorsionFree R S] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] [p.IsMaximal] (hp : p ) (P : (p.primesOver S)) :
      theorem IsDedekindDomain.primesOverEquivPrimesOver_ramificationIdx_eq {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Rₚ : Type u_3) [CommRing Rₚ] [Algebra R Rₚ] [IsLocalization.AtPrime Rₚ p] [IsLocalRing Rₚ] (Sₚ : Type u_4) [CommRing Sₚ] [Algebra S Sₚ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sₚ] [Algebra Rₚ Sₚ] [IsDomain R] [IsDedekindDomain S] [Module.IsTorsionFree R S] [Algebra R Sₚ] [IsScalarTower R S Sₚ] [IsScalarTower R Rₚ Sₚ] (hp : p ) [NoZeroSMulDivisors R Rₚ] [NoZeroSMulDivisors R Sₚ] [NoZeroSMulDivisors S Sₚ] [NoZeroSMulDivisors Rₚ Sₚ] [IsDedekindDomain Rₚ] [IsDedekindDomain Sₚ] (P : (p.primesOver S)) :