Documentation

Mathlib.RingTheory.MvPolynomial.IrreducibleQuadratic

Irreducibility of linear and quadratic polynomials #

TODO #

theorem MvPolynomial.irreducible_mul_X_add {n : Type u_3} {R : Type u_4} [CommRing R] [IsDomain R] (f g : MvPolynomial n R) (i : n) (hf0 : f 0) (hif : if.vars) (hig : ig.vars) (h : IsRelPrime f g) :
Irreducible (f * X i + g)
theorem MvPolynomial.irreducible_of_disjoint_support {n : Type u_1} {R : Type u_2} [CommRing R] [IsDomain R] {f : MvPolynomial n R} (nontrivial : f.support.Nontrivial) {d : n →₀ } (hd : d f.support) {i : n} (hdi : d i = 1) (disjoint : (↑f.support).PairwiseDisjoint Finsupp.support) (isPrimitive : ∀ (r : R), (∀ (d : n →₀ ), r coeff d f)IsUnit r) :

A multivariate polynomial f whose support is nontrivial, such that some variable i appears with exponent 1 in one nontrivial monomial, whose monomials have disjoint supports, and which is primitive, is irreducible.

The quadratic polynomial $$\sum_{i=1}^n X_i Y_i$$. #

theorem MvPolynomial.irreducible_of_totalDegree_eq_one {n : Type u_1} {R : Type u_2} [CommRing R] [IsDomain R] {p : MvPolynomial n R} (hp : p.totalDegree = 1) (hp' : ∀ (x : R), (∀ (i : n →₀ ), x coeff i p)IsUnit x) :
noncomputable def MvPolynomial.sumSMulX {n : Type u_1} {R : Type u_2} [CommRing R] :

The linear polynomial $$\sum_i c_i X_i$$.

Equations
Instances For
    theorem MvPolynomial.coeff_sumSMulX {n : Type u_1} {R : Type u_2} [CommRing R] (c : n →₀ R) (i : n) :
    theorem MvPolynomial.irreducible_sumSMulX {n : Type u_1} {R : Type u_2} [CommRing R] (c : n →₀ R) [IsDomain R] (hc_nonempty : c.support.Nonempty) (hc_gcd : ∀ (r : R), (∀ (i : n), r c i)IsUnit r) :
    noncomputable def MvPolynomial.sumSMulXSMulY {n : Type u_1} {R : Type u_2} [CommRing R] :

    The quadratic polynomial $$\sum_i c_i X_i Y_i$$.

    Equations
    Instances For
      theorem MvPolynomial.irreducible_sumSMulXSMulY {n : Type u_1} {R : Type u_2} [CommRing R] (c : n →₀ R) [IsDomain R] (hc : c.support.Nontrivial) (h_dvd : ∀ (r : R), (∀ (i : n), r c i)IsUnit r) :