The free locus of a module #
Main definitions and results #
Let M
be a finitely presented R
-module.
Module.freeLocus
: The set of pointsx
inSpec R
such thatMₓ
is free overRₓ
.Module.freeLocus_eq_univ_iff
: The free locus is the wholeSpec R
if and only ifM
is projective.Module.basicOpen_subset_freeLocus_iff
:D(f)
is contained in the free locus if and only ifM_f
is projective overR_f
.Module.rankAtStalk
: The functionSpec R → ℕ
sendingx
torank_{Rₓ} Mₓ
.Module.isLocallyConstant_rankAtStalk
: IfM
is flat overR
, thenrankAtStalk
is locally constant.
def
Module.freeLocus
(R : Type uR)
(M : Type uM)
[CommRing R]
[AddCommGroup M]
[Module R M]
:
Set (PrimeSpectrum R)
The free locus of a module, i.e. the set of primes p
such that Mₚ
is free over Rₚ
.
Equations
- Module.freeLocus R M = {p : PrimeSpectrum R | Module.Free (Localization.AtPrime p.asIdeal) (LocalizedModule p.asIdeal.primeCompl M)}
Instances For
theorem
Module.mem_freeLocus
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
{p : PrimeSpectrum R}
:
p ∈ freeLocus R M ↔ Free (Localization.AtPrime p.asIdeal) (LocalizedModule p.asIdeal.primeCompl M)
theorem
Module.mem_freeLocus_of_isLocalization
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
(p : PrimeSpectrum R)
(Rₚ : Type u_1)
(Mₚ : Type u_2)
[CommRing Rₚ]
[Algebra R Rₚ]
[IsLocalization.AtPrime Rₚ p.asIdeal]
[AddCommGroup Mₚ]
[Module R Mₚ]
(f : M →ₗ[R] Mₚ)
[IsLocalizedModule p.asIdeal.primeCompl f]
[Module Rₚ Mₚ]
[IsScalarTower R Rₚ Mₚ]
:
theorem
Module.mem_freeLocus_iff_tensor
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
(p : PrimeSpectrum R)
(Rₚ : Type u_1)
[CommRing Rₚ]
[Algebra R Rₚ]
[IsLocalization.AtPrime Rₚ p.asIdeal]
:
p ∈ freeLocus R M ↔ Free Rₚ (TensorProduct R Rₚ M)
theorem
Module.freeLocus_congr
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
{M' : Type u_1}
[AddCommGroup M']
[Module R M']
(e : M ≃ₗ[R] M')
:
theorem
Module.comap_freeLocus_le
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
{A : Type u_1}
[CommRing A]
[Algebra R A]
:
⇑(PrimeSpectrum.comap (algebraMap R A)) ⁻¹' freeLocus R M ≤ freeLocus A (TensorProduct R A M)
theorem
Module.freeLocus_localization
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
(S : Submonoid R)
:
freeLocus (Localization S) (LocalizedModule S M) = ⇑(PrimeSpectrum.comap (algebraMap R (Localization S))) ⁻¹' freeLocus R M
theorem
Module.freeLocus_eq_univ_iff
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
[FinitePresentation R M]
:
freeLocus R M = Set.univ ↔ Projective R M
theorem
Module.freeLocus_eq_univ
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
[FinitePresentation R M]
[Flat R M]
:
theorem
Module.basicOpen_subset_freeLocus_iff
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
[FinitePresentation R M]
{f : R}
:
↑(PrimeSpectrum.basicOpen f) ⊆ freeLocus R M ↔ Projective (Localization.Away f) (LocalizedModule (Submonoid.powers f) M)
theorem
Module.isOpen_freeLocus
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
[FinitePresentation R M]
:
noncomputable def
Module.rankAtStalk
{R : Type uR}
(M : Type uM)
[CommRing R]
[AddCommGroup M]
[Module R M]
(p : PrimeSpectrum R)
:
The rank of M
at the stalk of p
is the rank of Mₚ
as a Rₚ
-module.
Equations
- Module.rankAtStalk M p = Module.finrank (Localization.AtPrime p.asIdeal) (LocalizedModule p.asIdeal.primeCompl M)
Instances For
theorem
Module.isLocallyConstant_rankAtStalk_freeLocus
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
[FinitePresentation R M]
:
IsLocallyConstant fun (x : ↑(freeLocus R M)) => rankAtStalk M ↑x
theorem
Module.isLocallyConstant_rankAtStalk
{R : Type uR}
{M : Type uM}
[CommRing R]
[AddCommGroup M]
[Module R M]
[FinitePresentation R M]
[Flat R M]
: