Documentation

Mathlib.AlgebraicGeometry.FunctionField

Function field of integral schemes #

We define the function field of an irreducible scheme as the stalk of the generic point. This is a field when the scheme is integral.

Main definition #

@[reducible, inline]
noncomputable abbrev AlgebraicGeometry.Scheme.functionField (X : Scheme) [IrreducibleSpace X.toPresheafedSpace] :

The function field of an irreducible scheme is the local ring at its generic point. Despite the name, this is a field only when the scheme is integral.

Equations
  • X.functionField = X.presheaf.stalk (genericPoint X.toPresheafedSpace)
Instances For
    @[reducible, inline]
    noncomputable abbrev AlgebraicGeometry.Scheme.germToFunctionField (X : Scheme) [IrreducibleSpace X.toPresheafedSpace] (U : X.Opens) [h : Nonempty (↑U).toPresheafedSpace] :
    X.presheaf.obj (Opposite.op U) X.functionField

    The restriction map from a component to the function field.

    Equations
    • X.germToFunctionField U = X.presheaf.germ U (genericPoint X.toPresheafedSpace)
    Instances For
      theorem AlgebraicGeometry.germ_injective_of_isIntegral (X : Scheme) [IsIntegral X] {U : X.Opens} (x : X.toPresheafedSpace) (hx : x U) :
      Function.Injective (X.presheaf.germ U x hx).hom
      theorem AlgebraicGeometry.Scheme.germToFunctionField_injective (X : Scheme) [IsIntegral X] (U : X.Opens) [Nonempty (↑U).toPresheafedSpace] :
      Function.Injective (X.germToFunctionField U).hom
      theorem AlgebraicGeometry.genericPoint_eq_of_isOpenImmersion {X Y : Scheme} (f : X Y) [H : IsOpenImmersion f] [hX : IrreducibleSpace X.toPresheafedSpace] [IrreducibleSpace Y.toPresheafedSpace] :
      f.base (genericPoint X.toPresheafedSpace) = genericPoint Y.toPresheafedSpace
      noncomputable instance AlgebraicGeometry.stalkFunctionFieldAlgebra (X : Scheme) [IrreducibleSpace X.toPresheafedSpace] (x : X.toPresheafedSpace) :
      Algebra (X.presheaf.stalk x) X.functionField
      Equations
      instance AlgebraicGeometry.functionField_isScalarTower (X : Scheme) [IrreducibleSpace X.toPresheafedSpace] (U : X.Opens) (x : U) [Nonempty (↑U).toPresheafedSpace] :
      IsScalarTower (X.presheaf.obj (Opposite.op U)) (X.presheaf.stalk x) X.functionField
      @[simp]
      theorem AlgebraicGeometry.IsAffineOpen.primeIdealOf_genericPoint {X : Scheme} [IsIntegral X] {U : X.Opens} (hU : IsAffineOpen U) [h : Nonempty (↑U).toPresheafedSpace] :
      hU.primeIdealOf genericPoint X.toPresheafedSpace, = genericPoint (Spec (X.presheaf.obj (Opposite.op U))).toPresheafedSpace
      theorem AlgebraicGeometry.functionField_isFractionRing_of_isAffineOpen (X : Scheme) [IsIntegral X] (U : X.Opens) (hU : IsAffineOpen U) [Nonempty (↑U).toPresheafedSpace] :
      IsFractionRing (X.presheaf.obj (Opposite.op U)) X.functionField
      instance AlgebraicGeometry.instIsAffineObjIsOpenImmersionAffineCover (X : Scheme) (x : X.toPresheafedSpace) :
      IsAffine (X.affineCover.obj x)
      instance AlgebraicGeometry.instIsFractionRingCarrierStalkCommRingCatPresheafFunctionField (X : Scheme) [IsIntegral X] (x : X.toPresheafedSpace) :
      IsFractionRing (X.presheaf.stalk x) X.functionField