Functorial constructions of ideal sheaves #
We define the pullback and pushforward of ideal sheaves in this file.
Main definitions #
AlgebraicGeometry.Scheme.IdealSheafData.comap
: The pullback of an ideal sheaf.AlgebraicGeometry.Scheme.IdealSheafData.map
: The pushforward of an ideal sheaf.AlgebraicGeometry.Scheme.IdealSheafData.map_gc
: The galois connection between pullback and pushforward.
def
AlgebraicGeometry.Scheme.IdealSheafData.comap
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
:
The pullback of an ideal sheaf.
Equations
Instances For
def
AlgebraicGeometry.Scheme.IdealSheafData.comapIso
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
:
The subscheme associated to the pullback ideal sheaf is isomorphic to the fibred product.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comapIso_inv_subschemeι
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comapIso_inv_subschemeι_assoc
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
{Z : Scheme}
(h : X ⟶ Z)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_fst
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_fst_assoc
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
{Z : Scheme}
(h : X ⟶ Z)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comap_comp
{X Y Z : Scheme}
(I : Z.IdealSheafData)
(f : X ⟶ Y)
(g : Y ⟶ Z)
:
@[simp]
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.support_comap
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
:
The pushforward of an ideal sheaf.
Equations
Instances For
theorem
AlgebraicGeometry.Scheme.IdealSheafData.le_map_iff_comap_le
{X Y : Scheme}
{I : X.IdealSheafData}
{f : X ⟶ Y}
{J : Y.IdealSheafData}
:
theorem
AlgebraicGeometry.Scheme.IdealSheafData.map_gc
{X Y : Scheme}
(f : X ⟶ Y)
:
GaloisConnection (fun (x : Y.IdealSheafData) => x.comap f) fun (x : X.IdealSheafData) => x.map f
Pushforward and pullback of ideal sheaves forms a galois connection.
theorem
AlgebraicGeometry.Scheme.IdealSheafData.map_mono
{X Y : Scheme}
(f : X ⟶ Y)
:
Monotone fun (x : X.IdealSheafData) => x.map f
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comap_mono
{X Y : Scheme}
(f : X ⟶ Y)
:
Monotone fun (x : Y.IdealSheafData) => x.comap f
theorem
AlgebraicGeometry.Scheme.IdealSheafData.le_map_comap
{X Y : Scheme}
(J : Y.IdealSheafData)
(f : X ⟶ Y)
:
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comap_map_le
{X Y : Scheme}
(I : X.IdealSheafData)
(f : X ⟶ Y)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.map_inf
{X Y : Scheme}
(I₁ I₂ : X.IdealSheafData)
(f : X ⟶ Y)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comap_sup
{X Y : Scheme}
(J₁ J₂ : Y.IdealSheafData)
(f : X ⟶ Y)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.map_comp
{X Y Z : Scheme}
(I : X.IdealSheafData)
(f : X ⟶ Y)
(g : Y ⟶ Z)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.map_vanishingIdeal
{X Y : Scheme}
(f : X ⟶ Y)
(Z : TopologicalSpace.Closeds ↥X)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.support_map
{X Y : Scheme}
(I : X.IdealSheafData)
(f : X ⟶ Y)
[QuasiCompact f]
:
(I.map f).support = TopologicalSpace.Closeds.closure (⇑(CategoryTheory.ConcreteCategory.hom f.base) '' ↑I.support)
theorem
AlgebraicGeometry.Scheme.IdealSheafData.ideal_map
{X Y : Scheme}
(I : X.IdealSheafData)
(f : X ⟶ Y)
[QuasiCompact f]
(U : ↑Y.affineOpens)
(H : IsAffineOpen ((TopologicalSpace.Opens.map f.base).obj ↑U))
:
(I.map f).ideal U = Ideal.comap (CommRingCat.Hom.hom (Hom.app f ↑U)) (I.ideal ⟨(TopologicalSpace.Opens.map f.base).obj ↑U, H⟩)
theorem
AlgebraicGeometry.Scheme.IdealSheafData.ideal_map_of_isAffineHom
{X Y : Scheme}
(I : X.IdealSheafData)
(f : X ⟶ Y)
[IsAffineHom f]
(U : ↑Y.affineOpens)
:
(I.map f).ideal U = Ideal.comap (CommRingCat.Hom.hom (Hom.app f ↑U)) (I.ideal ⟨(TopologicalSpace.Opens.map f.base).obj ↑U, ⋯⟩)
theorem
AlgebraicGeometry.Scheme.IdealSheafData.ideal_comap_of_isOpenImmersion
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
[IsOpenImmersion f]
(U : ↑X.affineOpens)
:
(I.comap f).ideal U = Ideal.comap (CommRingCat.Hom.hom (Hom.appIso f ↑U).inv) (I.ideal ⟨(Hom.opensFunctor f).obj ↑U, ⋯⟩)
def
AlgebraicGeometry.Scheme.IdealSheafData.subschemeMap
{X Y : Scheme}
(I : X.IdealSheafData)
(J : Y.IdealSheafData)
(f : X ⟶ Y)
(H : J ≤ I.map f)
:
If J ≤ I.map f
, then f
restricts to a map I ⟶ J
between the closed subschemes.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.subschemeMap_subschemeι
{X Y : Scheme}
(I : X.IdealSheafData)
(J : Y.IdealSheafData)
(f : X ⟶ Y)
(H : J ≤ I.map f)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.subschemeMap_subschemeι_assoc
{X Y : Scheme}
(I : X.IdealSheafData)
(J : Y.IdealSheafData)
(f : X ⟶ Y)
(H : J ≤ I.map f)
{Z : Scheme}
(h : Y ⟶ Z)
:
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_snd
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
:
CategoryTheory.CategoryStruct.comp (I.comapIso f).hom (CategoryTheory.Limits.pullback.snd f I.subschemeι) = (I.comap f).subschemeMap I f ⋯
@[simp]
theorem
AlgebraicGeometry.Scheme.IdealSheafData.comapIso_hom_snd_assoc
{X Y : Scheme}
(I : Y.IdealSheafData)
(f : X ⟶ Y)
{Z : Scheme}
(h : I.subscheme ⟶ Z)
: