Documentation

Mathlib.AlgebraicGeometry.IdealSheaf.Functorial

Functorial constructions of ideal sheaves #

We define the pullback and pushforward of ideal sheaves in this file.

Main definitions #

The subscheme associated to the pullback ideal sheaf is isomorphic to the fibred product.

Equations
Instances For
    theorem AlgebraicGeometry.Scheme.IdealSheafData.map_gc {X Y : Scheme} (f : X Y) :
    GaloisConnection (fun (x : Y.IdealSheafData) => x.comap f) fun (x : X.IdealSheafData) => x.map f

    Pushforward and pullback of ideal sheaves forms a galois connection.

    @[simp]
    theorem AlgebraicGeometry.Scheme.IdealSheafData.map_inf {X Y : Scheme} (I₁ I₂ : X.IdealSheafData) (f : X Y) :
    (I₁I₂).map f = I₁.map fI₂.map f
    @[simp]
    theorem AlgebraicGeometry.Scheme.IdealSheafData.comap_sup {X Y : Scheme} (J₁ J₂ : Y.IdealSheafData) (f : X Y) :
    (J₁J₂).comap f = J₁.comap fJ₂.comap f

    If J ≤ I.map f, then f restricts to a map I ⟶ J between the closed subschemes.

    Equations
    Instances For