Properness of Proj A
#
We show that Proj 𝒜
is proper over Spec 𝒜₀
.
Notes #
This contribution was created as part of the Durham Computational Algebraic Geometry Workshop
instance
AlgebraicGeometry.Proj.isSeparated
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(𝒜 : ℕ → Submodule R A)
[GradedAlgebra 𝒜]
:
instance
AlgebraicGeometry.Proj.instIsSeparated
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(𝒜 : ℕ → Submodule R A)
[GradedAlgebra 𝒜]
:
(Proj 𝒜).IsSeparated
instance
AlgebraicGeometry.Proj.instLocallyOfFiniteTypeToSpecZeroOfFiniteTypeSubtypeMemSubmoduleOfNatNat
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(𝒜 : ℕ → Submodule R A)
[GradedAlgebra 𝒜]
[Algebra.FiniteType (↥(𝒜 0)) A]
:
instance
AlgebraicGeometry.Proj.instQuasiCompactToSpecZeroOfFiniteTypeSubtypeMemSubmoduleOfNatNat
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(𝒜 : ℕ → Submodule R A)
[GradedAlgebra 𝒜]
[Algebra.FiniteType (↥(𝒜 0)) A]
:
theorem
AlgebraicGeometry.Proj.valuativeCriterion_existence_aux
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(𝒜 : ℕ → Submodule R A)
[GradedAlgebra 𝒜]
{O : Type u_3}
[CommRing O]
[IsDomain O]
[ValuationRing O]
{K : Type u_4}
[Field K]
[Algebra O K]
[IsFractionRing O K]
(φ₀ : ↥(𝒜 0) →+* O)
(ι : Type u_5)
[Finite ι]
(x : ι → A)
(h2 : Algebra.adjoin (↥(𝒜 0)) (Set.range x) = ⊤)
(j : ι)
(φ : HomogeneousLocalization.Away 𝒜 (x j) →+* K)
(hcomm : (algebraMap O K).comp φ₀ = φ.comp (HomogeneousLocalization.fromZeroRingHom 𝒜 (Submonoid.powers (x j))))
(d : ι → ℕ)
(hdi : ∀ (i : ι), 0 < d i)
(hxdi : ∀ (i : ι), x i ∈ 𝒜 (d i))
:
∃ (j₀ : ι) (φ' : HomogeneousLocalization.Away 𝒜 (x j * x j₀) →+* K),
φ'.comp (HomogeneousLocalization.awayMap 𝒜 ⋯ ⋯) = φ ∧ (φ'.comp (HomogeneousLocalization.awayMap 𝒜 ⋯ ⋯)).range ≤ (algebraMap O K).range
Let 𝒜
be a graded ring generated over 𝒜₀
by finitely many homogeneous elements.
Suppose we have the following diagram for some homogeneous x
with O
a valuation ring and K = Frac(O)
.
φ
K ←--- 𝒜_{(x)}
↑ ↑
| |
| |
O ←---- 𝒜₀
φ₀
Then there exists a lift φₗ : 𝒜_{(x₀)} →+* O
for some x₀
such that these two diagrams exist and commute.
φ' φ'
K ←--- 𝒜_{(x x₀)} K ←--- 𝒜_{(x x₀)}
↑ ↑ ↖ ↑
| | φ ⟍ |
| | ⟍ |
O ←---- 𝒜_{(x₀)} 𝒜_{(x)}
φₗ
This is the underlying algebraic statement of the valuative criterion for Proj 𝒜
.
Stacks Tag 01MF (algebraic part)
theorem
AlgebraicGeometry.Proj.valuativeCriterion_existence
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(𝒜 : ℕ → Submodule R A)
[GradedAlgebra 𝒜]
[Algebra.FiniteType (↥(𝒜 0)) A]
:
instance
AlgebraicGeometry.Proj.instUniversallyClosedToSpecZeroOfFiniteTypeSubtypeMemSubmoduleOfNatNat
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(𝒜 : ℕ → Submodule R A)
[GradedAlgebra 𝒜]
[Algebra.FiniteType (↥(𝒜 0)) A]
:
instance
AlgebraicGeometry.Proj.instIsProperToSpecZeroOfFiniteTypeSubtypeMemSubmoduleOfNatNat
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(𝒜 : ℕ → Submodule R A)
[GradedAlgebra 𝒜]
[Algebra.FiniteType (↥(𝒜 0)) A]
:
IsProper (toSpecZero 𝒜)