Proper morphisms #
A morphism of schemes is proper if it is separated, universally closed and (locally) of finite type. Note that we don't require quasi-compact, since this is implied by universally closed.
Main results #
AlgebraicGeometry.isField_of_universallyClosed
: IfX
is an integral scheme that is universally closed overSpec K
, thenΓ(X, ⊤)
is a field.AlgebraicGeometry.finite_appTop_of_universallyClosed
: IfX
is an integral scheme that is universally closed and of finite type overSpec K
, thenΓ(X, ⊤)
is finite dimensional overK
.
structure
AlgebraicGeometry.IsProper
{X Y : Scheme}
(f : Quiver.Hom X Y)
extends AlgebraicGeometry.IsSeparated f, AlgebraicGeometry.UniversallyClosed f, AlgebraicGeometry.LocallyOfFiniteType f :
A morphism is proper if it is separated, universally closed and locally of finite type.
- out : (topologically @IsClosedMap).universally f
- finiteType_of_affine_subset (U : Y.affineOpens.Elem) (V : X.affineOpens.Elem) (e : LE.le V.val ((TopologicalSpace.Opens.map f.base).obj U.val)) : (CommRingCat.Hom.hom (Scheme.Hom.appLE f U.val V.val e)).FiniteType
Instances For
theorem
AlgebraicGeometry.isProper_iff
{X Y : Scheme}
(f : Quiver.Hom X Y)
:
Iff (IsProper f) (And (IsSeparated f) (And (UniversallyClosed f) (LocallyOfFiniteType f)))
theorem
AlgebraicGeometry.IsProper.instCompScheme
{X Y Z : Scheme}
(f : Quiver.Hom X Y)
(g : Quiver.Hom Y Z)
[IsProper f]
[IsProper g]
:
theorem
AlgebraicGeometry.IsProper.instOfIsFinite
{X Y : Scheme}
(f : Quiver.Hom X Y)
[IsFinite f]
:
IsProper f
theorem
AlgebraicGeometry.IsFinite.iff_isProper_and_isAffineHom
{X Y : Scheme}
{f : Quiver.Hom X Y}
:
Iff (IsFinite f) (And (IsProper f) (IsAffineHom f))
theorem
AlgebraicGeometry.instIsProperOfIsFinite
{X Y : Scheme}
(f : Quiver.Hom X Y)
[IsFinite f]
:
IsProper f
theorem
AlgebraicGeometry.UniversallyClosed.of_comp_of_isSeparated
{X Y Z : Scheme}
(f : Quiver.Hom X Y)
(g : Quiver.Hom Y Z)
[UniversallyClosed (CategoryTheory.CategoryStruct.comp f g)]
[IsSeparated g]
:
Stacks Tag 01W6 ((1))
theorem
AlgebraicGeometry.IsProper.of_comp_of_isSeparated
{X Y Z : Scheme}
(f : Quiver.Hom X Y)
(g : Quiver.Hom Y Z)
[IsProper (CategoryTheory.CategoryStruct.comp f g)]
[IsSeparated g]
:
IsProper f
Stacks Tag 01W6 ((2))
theorem
AlgebraicGeometry.isIntegral_appTop_of_universallyClosed
{X Y : Scheme}
(f : Quiver.Hom X Y)
[UniversallyClosed f]
[IsAffine Y]
:
If f : X ⟶ Y
is universally closed and Y
is affine,
then the map on global sections is integral.
theorem
AlgebraicGeometry.isField_of_universallyClosed
{X : Scheme}
(K : Type u)
[Field K]
(f : Quiver.Hom X (Spec (CommRingCat.of K)))
[IsIntegral X]
[UniversallyClosed f]
:
If X
is an integral scheme that is universally closed over Spec K
,
then Γ(X, ⊤)
is a field.
theorem
AlgebraicGeometry.finite_appTop_of_universallyClosed
{X : Scheme}
(K : Type u)
[Field K]
(f : Quiver.Hom X (Spec (CommRingCat.of K)))
[IsIntegral X]
[UniversallyClosed f]
[LocallyOfFiniteType f]
:
If X
is an integral scheme that is universally closed and of finite type over Spec K
,
then Γ(X, ⊤)
is a finite field extension over K
.