Valuative criterion #
Main results #
AlgebraicGeometry.UniversallyClosed.eq_valuativeCriterion
: A morphism is universally closed if and only if it is quasi-compact and satisfies the existence part of the valuative criterion.AlgebraicGeometry.IsSeparated.eq_valuativeCriterion
: A morphism is separated if and only if it is quasi-separated and satisfies the uniqueness part of the valuative criterion.AlgebraicGeometry.IsProper.eq_valuativeCriterion
: A morphism is proper if and only if it is qcqs and of fintite type and satisfies the valuative criterion.
Future projects #
Show that it suffices to check discrete valuation rings when the base is noetherian.
A valuative commutative square over a morphism f : X ⟶ Y
is a square
Spec K ⟶ Y
| |
↓ ↓
Spec R ⟶ X
where R
is a valuation ring, and K
is its ring of fractions.
We are interested in finding lifts Spec R ⟶ Y
of this diagram.
- R : Type u
The valuation ring of a valuative commutative square.
- commRing : CommRing self.R
- domain : IsDomain self.R
- valuationRing : ValuationRing self.R
- K : Type u
The field of fractions of a valuative commutative square.
- field : Field self.K
- algebra : Algebra self.R self.K
- isFractionRing : IsFractionRing self.R self.K
- i₁ : AlgebraicGeometry.Spec (CommRingCat.of self.K) ⟶ X
The top map in a valuative commutative map.
- i₂ : AlgebraicGeometry.Spec (CommRingCat.of self.R) ⟶ Y
The bottom map in a valuative commutative map.
- commSq : CategoryTheory.CommSq self.i₁ (AlgebraicGeometry.Spec.map (CommRingCat.ofHom (algebraMap self.R self.K))) f self.i₂
Instances For
A morphism f : X ⟶ Y
satisfies the existence part of the valuative criterion if
every valuative commutative square over f
has (at least) a lift.
Equations
- AlgebraicGeometry.ValuativeCriterion.Existence f = ∀ (S : AlgebraicGeometry.ValuativeCommSq f), ⋯.HasLift
Instances For
A morphism f : X ⟶ Y
satisfies the uniqueness part of the valuative criterion if
every valuative commutative square over f
has at most one lift.
Equations
- AlgebraicGeometry.ValuativeCriterion.Uniqueness f = ∀ (S : AlgebraicGeometry.ValuativeCommSq f), Subsingleton ⋯.LiftStruct
Instances For
A morphism f : X ⟶ Y
satisfies the valuative criterion if
every valuative commutative square over f
has a unique lift.
Equations
- AlgebraicGeometry.ValuativeCriterion f = ∀ (S : AlgebraicGeometry.ValuativeCommSq f), Nonempty (Unique ⋯.LiftStruct)
Instances For
The valuative criterion for universally closed morphisms.
The valuative criterion for universally closed morphisms.
The valuative criterion for separated morphisms.
The valuative criterion for separated morphisms.
The valuative criterion for proper morphisms.
The valuative criterion for proper morphisms.