Documentation

Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization

Homogeneous Localization #

Notation #

Main definitions and results #

This file constructs the subring of Aₓ where the numerator and denominator have the same grading, i.e. {a/b ∈ Aₓ | ∃ (i : ι), a ∈ 𝒜ᵢ ∧ b ∈ 𝒜ᵢ}.

However NumDenSameDeg 𝒜 x cannot have a ring structure for many reasons, for example if c is a NumDenSameDeg, then generally, c + (-c) is not necessarily 0 for degree reasons --- 0 is considered to have grade zero (see deg_zero) but c + (-c) has the same degree as c. To circumvent this, we quotient NumDenSameDeg 𝒜 x by the kernel of c ↦ c.num / c.den.

References #

structure HomogeneousLocalization.NumDenSameDeg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) (x : Submonoid A) :
Type (max u_1 u_3)

Let x be a submonoid of A, then NumDenSameDeg 𝒜 x is a structure with a numerator and a denominator with same grading such that the denominator is contained in x.

  • deg : ι
  • num : (𝒜 self.deg)
  • den : (𝒜 self.deg)
  • den_mem : self.den x
Instances For
    theorem HomogeneousLocalization.NumDenSameDeg.ext {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) {c1 c2 : HomogeneousLocalization.NumDenSameDeg 𝒜 x} (hdeg : c1.deg = c2.deg) (hnum : c1.num = c2.num) (hden : c1.den = c2.den) :
    c1 = c2
    instance HomogeneousLocalization.NumDenSameDeg.instNeg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) :
    Equations
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_neg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) (c : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
    (-c).deg = c.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_neg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) (c : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
    (-c).num = -c.num
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_neg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) (c : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
    (-c).den = c.den
    instance HomogeneousLocalization.NumDenSameDeg.instSMul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) {α : Type u_4} [SMul α R] [SMul α A] [IsScalarTower α R A] :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_smul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) {α : Type u_4} [SMul α R] [SMul α A] [IsScalarTower α R A] (c : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (m : α) :
    (m c).deg = c.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_smul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) {α : Type u_4} [SMul α R] [SMul α A] [IsScalarTower α R A] (c : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (m : α) :
    (m c).num = m c.num
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_smul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) {α : Type u_4} [SMul α R] [SMul α A] [IsScalarTower α R A] (c : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (m : α) :
    (m c).den = c.den
    instance HomogeneousLocalization.NumDenSameDeg.instOne {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
    Equations
    @[simp]
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_one {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_one {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
    instance HomogeneousLocalization.NumDenSameDeg.instZero {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
    Equations
    @[simp]
    @[simp]
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_zero {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
    instance HomogeneousLocalization.NumDenSameDeg.instMul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_mul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (c1 c2 : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
    (c1 * c2).deg = c1.deg + c2.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_mul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (c1 c2 : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
    (c1 * c2).num = c1.num * c2.num
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_mul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (c1 c2 : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
    (c1 * c2).den = c1.den * c2.den
    instance HomogeneousLocalization.NumDenSameDeg.instAdd {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_add {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (c1 c2 : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
    (c1 + c2).deg = c1.deg + c2.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_add {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (c1 c2 : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
    (c1 + c2).num = c1.den * c2.num + c2.den * c1.num
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_add {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (c1 c2 : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
    (c1 + c2).den = c1.den * c2.den
    instance HomogeneousLocalization.NumDenSameDeg.instPowNat {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.deg_pow {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (c : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (n : ) :
    (c ^ n).deg = n c.deg
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.num_pow {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (c : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (n : ) :
    (c ^ n).num = c.num ^ n
    @[simp]
    theorem HomogeneousLocalization.NumDenSameDeg.den_pow {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (c : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (n : ) :
    (c ^ n).den = c.den ^ n
    def HomogeneousLocalization.NumDenSameDeg.embedding {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) (x : Submonoid A) (p : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :

    For x : prime ideal of A and any p : NumDenSameDeg 𝒜 x, or equivalent a numerator and a denominator of the same degree, we get an element p.num / p.den of Aₓ.

    Equations
    Instances For
      def HomogeneousLocalization {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) (x : Submonoid A) :
      Type (max u_1 u_3)

      For x : prime ideal of A, HomogeneousLocalization 𝒜 x is NumDenSameDeg 𝒜 x modulo the kernel of embedding 𝒜 x. This is essentially the subring of Aₓ where the numerator and denominator share the same grading.

      Equations
      Instances For
        @[reducible, inline]
        abbrev HomogeneousLocalization.mk {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (y : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :

        Construct an element of HomogeneousLocalization 𝒜 x from a homogeneous fraction.

        Equations
        Instances For
          theorem HomogeneousLocalization.mk_surjective {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} :
          Function.Surjective HomogeneousLocalization.mk
          def HomogeneousLocalization.val {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (y : HomogeneousLocalization 𝒜 x) :

          View an element of HomogeneousLocalization 𝒜 x as an element of Aₓ by forgetting that the numerator and denominator are of the same grading.

          Equations
          Instances For
            @[simp]
            theorem HomogeneousLocalization.val_mk {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (i : HomogeneousLocalization.NumDenSameDeg 𝒜 x) :
            (HomogeneousLocalization.mk i).val = Localization.mk i.num i.den,
            theorem HomogeneousLocalization.val_injective {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) :
            Function.Injective HomogeneousLocalization.val
            theorem HomogeneousLocalization.subsingleton {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) {x : Submonoid A} (hx : 0 x) :
            instance HomogeneousLocalization.instSMul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) {α : Type u_4} [SMul α R] [SMul α A] [IsScalarTower α R A] [IsScalarTower α A A] :
            Equations
            @[simp]
            theorem HomogeneousLocalization.mk_smul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) {α : Type u_4} [SMul α R] [SMul α A] [IsScalarTower α R A] [IsScalarTower α A A] (i : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (m : α) :
            @[simp]
            theorem HomogeneousLocalization.val_smul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) {α : Type u_4} [SMul α R] [SMul α A] [IsScalarTower α R A] [IsScalarTower α A A] (n : α) (y : HomogeneousLocalization 𝒜 x) :
            (n y).val = n y.val
            theorem HomogeneousLocalization.val_nsmul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) (n : ) (y : HomogeneousLocalization 𝒜 x) :
            (n y).val = n y.val
            theorem HomogeneousLocalization.val_zsmul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) (n : ) (y : HomogeneousLocalization 𝒜 x) :
            (n y).val = n y.val
            instance HomogeneousLocalization.instNeg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) :
            Equations
            @[simp]
            @[simp]
            theorem HomogeneousLocalization.val_neg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (y : HomogeneousLocalization 𝒜 x) :
            (-y).val = -y.val
            instance HomogeneousLocalization.hasPow {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            @[simp]
            theorem HomogeneousLocalization.mk_pow {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (i : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (n : ) :
            instance HomogeneousLocalization.instAdd {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            instance HomogeneousLocalization.instSub {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            instance HomogeneousLocalization.instMul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            instance HomogeneousLocalization.instOne {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            @[simp]
            theorem HomogeneousLocalization.mk_one {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            instance HomogeneousLocalization.instZero {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            @[simp]
            theorem HomogeneousLocalization.mk_zero {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            theorem HomogeneousLocalization.zero_eq {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            theorem HomogeneousLocalization.one_eq {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            @[simp]
            theorem HomogeneousLocalization.val_zero {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            @[simp]
            theorem HomogeneousLocalization.val_one {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            @[simp]
            theorem HomogeneousLocalization.val_add {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (y1 y2 : HomogeneousLocalization 𝒜 x) :
            (y1 + y2).val = y1.val + y2.val
            @[simp]
            theorem HomogeneousLocalization.val_mul {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (y1 y2 : HomogeneousLocalization 𝒜 x) :
            (y1 * y2).val = y1.val * y2.val
            @[simp]
            theorem HomogeneousLocalization.val_sub {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (y1 y2 : HomogeneousLocalization 𝒜 x) :
            (y1 - y2).val = y1.val - y2.val
            @[simp]
            theorem HomogeneousLocalization.val_pow {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (y : HomogeneousLocalization 𝒜 x) (n : ) :
            (y ^ n).val = y.val ^ n
            instance HomogeneousLocalization.instNatCast {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            • HomogeneousLocalization.instNatCast = { natCast := Nat.unaryCast }
            instance HomogeneousLocalization.instIntCast {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            • HomogeneousLocalization.instIntCast = { intCast := Int.castDef }
            @[simp]
            theorem HomogeneousLocalization.val_natCast {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (n : ) :
            (↑n).val = n
            @[simp]
            theorem HomogeneousLocalization.val_intCast {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (n : ) :
            (↑n).val = n
            instance HomogeneousLocalization.homogenousLocalizationCommRing {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            • HomogeneousLocalization.homogenousLocalizationCommRing = Function.Injective.commRing HomogeneousLocalization.val
            instance HomogeneousLocalization.homogeneousLocalizationAlgebra {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            Equations
            • HomogeneousLocalization.homogeneousLocalizationAlgebra = Algebra.mk { toFun := HomogeneousLocalization.val, map_one' := , map_mul' := , map_zero' := , map_add' := }
            @[simp]
            theorem HomogeneousLocalization.algebraMap_apply {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (y : HomogeneousLocalization 𝒜 x) :
            theorem HomogeneousLocalization.mk_eq_zero_of_num {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (f : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (h : f.num = 0) :
            theorem HomogeneousLocalization.mk_eq_zero_of_den {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (f : HomogeneousLocalization.NumDenSameDeg 𝒜 x) (h : f.den = 0) :
            def HomogeneousLocalization.fromZeroRingHom {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
            (𝒜 0) →+* HomogeneousLocalization 𝒜 x

            The map from 𝒜 0 to the degree 0 part of 𝒜ₓ sending f ↦ f/1.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              instance HomogeneousLocalization.instAlgebraSubtypeMemSubmoduleOfNat {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
              Algebra (↥(𝒜 0)) (HomogeneousLocalization 𝒜 x)
              Equations
              theorem HomogeneousLocalization.algebraMap_eq {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] :
              def HomogeneousLocalization.num {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (f : HomogeneousLocalization 𝒜 x) :
              A

              Numerator of an element in HomogeneousLocalization x.

              Equations
              Instances For
                def HomogeneousLocalization.den {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (f : HomogeneousLocalization 𝒜 x) :
                A

                Denominator of an element in HomogeneousLocalization x.

                Equations
                Instances For
                  def HomogeneousLocalization.deg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (f : HomogeneousLocalization 𝒜 x) :
                  ι

                  For an element in HomogeneousLocalization x, degree is the natural number i such that 𝒜 i contains both numerator and denominator.

                  Equations
                  Instances For
                    theorem HomogeneousLocalization.den_mem {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (f : HomogeneousLocalization 𝒜 x) :
                    f.den x
                    theorem HomogeneousLocalization.num_mem_deg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (f : HomogeneousLocalization 𝒜 x) :
                    f.num 𝒜 f.deg
                    theorem HomogeneousLocalization.den_mem_deg {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (f : HomogeneousLocalization 𝒜 x) :
                    f.den 𝒜 f.deg
                    theorem HomogeneousLocalization.eq_num_div_den {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (f : HomogeneousLocalization 𝒜 x) :
                    f.val = Localization.mk f.num f.den,
                    theorem HomogeneousLocalization.den_smul_val {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (f : HomogeneousLocalization 𝒜 x) :
                    f.den f.val = (algebraMap A (Localization x)) f.num
                    theorem HomogeneousLocalization.ext_iff_val {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {x : Submonoid A} (f g : HomogeneousLocalization 𝒜 x) :
                    f = g f.val = g.val
                    @[reducible, inline]
                    abbrev HomogeneousLocalization.AtPrime {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) (𝔭 : Ideal A) [𝔭.IsPrime] :
                    Type (max u_1 u_3)

                    Localizing a ring homogeneously at a prime ideal.

                    Equations
                    Instances For
                      theorem HomogeneousLocalization.isUnit_iff_isUnit_val {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (𝔭 : Ideal A) [𝔭.IsPrime] (f : HomogeneousLocalization.AtPrime 𝒜 𝔭) :
                      instance HomogeneousLocalization.instNontrivialAtPrime {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (𝔭 : Ideal A) [𝔭.IsPrime] :
                      instance HomogeneousLocalization.isLocalRing {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] (𝔭 : Ideal A) [𝔭.IsPrime] :
                      @[reducible, inline]
                      abbrev HomogeneousLocalization.Away {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) (f : A) :
                      Type (max u_1 u_3)

                      Localizing away from powers of f homogeneously.

                      Equations
                      Instances For
                        theorem HomogeneousLocalization.Away.eventually_smul_mem {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : ιSubmodule R A} {f : A} [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {m : ι} (hf : f 𝒜 m) (z : HomogeneousLocalization.Away 𝒜 f) :
                        ∀ᶠ (n : ) in Filter.atTop, f ^ n HomogeneousLocalization.val z (algebraMap A (Localization (Submonoid.powers f))) '' (𝒜 (n m))
                        def HomogeneousLocalization.map {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {B : Type u_4} [CommRing B] [Algebra R B] (ℬ : ιSubmodule R B) [GradedAlgebra ] {P : Submonoid A} {Q : Submonoid B} (g : A →+* B) (comap_le : P Submonoid.comap g Q) (hg : ∀ (i : ι), a𝒜 i, g a i) :

                        Let A, B be two graded algebras with the same indexing set and g : A → B be a graded algebra homomorphism (i.e. g(Aₘ) ⊆ Bₘ). Let P ≤ A be a submonoid and Q ≤ B be a submonoid such that P ≤ g⁻¹ Q, then g induce a map from the homogeneous localizations A⁰_P to the homogeneous localizations B⁰_Q.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[reducible, inline]
                          abbrev HomogeneousLocalization.mapId {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {P Q : Submonoid A} (h : P Q) :

                          Let A be a graded algebra and P ≤ Q be two submonoids, then the homogeneous localization of A at P embeds into the homogeneous localization of A at Q.

                          Equations
                          Instances For
                            theorem HomogeneousLocalization.map_mk {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {B : Type u_4} [CommRing B] [Algebra R B] (ℬ : ιSubmodule R B) [GradedAlgebra ] {P : Submonoid A} {Q : Submonoid B} (g : A →+* B) (comap_le : P Submonoid.comap g Q) (hg : ∀ (i : ι), a𝒜 i, g a i) (x : HomogeneousLocalization.NumDenSameDeg 𝒜 P) :
                            (HomogeneousLocalization.map 𝒜 g comap_le hg) (HomogeneousLocalization.mk x) = HomogeneousLocalization.mk { deg := x.deg, num := g x.num, , den := g x.den, , den_mem := }
                            theorem HomogeneousLocalization.awayMapAux_mk {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {f g x : A} (hx : x = f * g) (n : ι) (a : (𝒜 n)) (i : ) (hi : f ^ i 𝒜 n) :
                            (HomogeneousLocalization.awayMapAux✝ 𝒜 ) (HomogeneousLocalization.mk { deg := n, num := a, den := f ^ i, hi, den_mem := }) = Localization.mk (a * g ^ i) x ^ i,
                            theorem HomogeneousLocalization.range_awayMapAux_subset {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {e : ι} {f g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) :
                            Set.range (HomogeneousLocalization.awayMapAux✝ 𝒜 ) Set.range HomogeneousLocalization.val
                            def HomogeneousLocalization.awayMap {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {e : ι} {f g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) :

                            Given x = f * g with g homogeneous of positive degree, this is the map A_{(f)} → A_{(x)} taking a/f^i to ag^i/(fg)^i.

                            Equations
                            Instances For
                              theorem HomogeneousLocalization.val_awayMap_eq_aux {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {e : ι} {f g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) (a : HomogeneousLocalization.Away 𝒜 f) :
                              theorem HomogeneousLocalization.val_awayMap {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {e : ι} {f g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) (a : HomogeneousLocalization.Away 𝒜 f) :
                              theorem HomogeneousLocalization.awayMap_fromZeroRingHom {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {e : ι} {f g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) (a : (𝒜 0)) :
                              theorem HomogeneousLocalization.val_awayMap_mk {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {e : ι} {f g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) (n : ι) (a : (𝒜 n)) (i : ) (hi : f ^ i 𝒜 n) :
                              HomogeneousLocalization.val ((HomogeneousLocalization.awayMap 𝒜 hg hx) (HomogeneousLocalization.mk { deg := n, num := a, den := f ^ i, hi, den_mem := })) = Localization.mk (a * g ^ i) x ^ i,
                              def HomogeneousLocalization.awayMapₐ {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {e : ι} {f g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) :

                              Given x = f * g with g homogeneous of positive degree, this is the map A_{(f)} → A_{(x)} taking a/f^i to ag^i/(fg)^i.

                              Equations
                              Instances For
                                @[simp]
                                theorem HomogeneousLocalization.awayMapₐ_apply {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {e : ι} {f g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) (a : HomogeneousLocalization.Away 𝒜 f) :
                                def HomogeneousLocalization.Away.mk {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {f : A} {d : ι} (hf : f 𝒜 d) (n : ) (x : A) (hx : x 𝒜 (n d)) :

                                This is a convenient constructor for Away 𝒜 f when f is homogeneous. Away.mk 𝒜 hf n x hx is the fraction x / f ^ n.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem HomogeneousLocalization.Away.val_mk {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {f : A} {d : ι} (n : ) (hf : f 𝒜 d) (x : A) (hx : x 𝒜 (n d)) :
                                  theorem HomogeneousLocalization.Away.mk_surjective {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {f : A} {d : ι} (hf : f 𝒜 d) (x : HomogeneousLocalization.Away 𝒜 f) :
                                  ∃ (n : ) (a : A) (ha : a 𝒜 (n d)), HomogeneousLocalization.Away.mk 𝒜 hf n a ha = x
                                  @[simp]
                                  theorem HomogeneousLocalization.awayMap_mk {ι : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : ιSubmodule R A) [AddCommMonoid ι] [DecidableEq ι] [GradedAlgebra 𝒜] {e : ι} {f g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) {d : ι} (n : ) (hf : f 𝒜 d) (a : A) (ha : a 𝒜 (n d)) :
                                  @[reducible, inline]
                                  abbrev HomogeneousLocalization.Away.isLocalizationElem {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {e d : } {f : A} (hf : f 𝒜 d) {g : A} (hg : g 𝒜 e) :

                                  The element t := g ^ d / f ^ e such that A_{(fg)} = A_{(f)}[1/t].

                                  Equations
                                  Instances For
                                    theorem HomogeneousLocalization.Away.isLocalization_mul {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {𝒜 : Submodule R A} [GradedAlgebra 𝒜] {e d : } {f : A} (hf : f 𝒜 d) {g : A} (hg : g 𝒜 e) {x : A} (hx : x = f * g) (hd : d 0) :

                                    Let t := g ^ d / f ^ e, then A_{(fg)} = A_{(f)}[1/t].