A binary product of finite simplicial sets is finite #
If X₁ and X₂ are respectively of dimensions ≤ d₁ and ≤ d₂,
then X₁ ⊗ X₂ has dimension ≤ d₁ + d₂.
We also show that if X₁ and X₂ are finite, then X₁ ⊗ X₂ is also finite.
theorem
SSet.iSup_subcomplexOfSimplex_prod_eq_top
(X₁ X₂ : SSet)
:
⨆ (x₁ : X₁.N), ⨆ (x₂ : X₂.N), (Subcomplex.ofSimplex x₁.simplex).prod (Subcomplex.ofSimplex x₂.simplex) = ⊤
theorem
SSet.Subcomplex.ofSimplexProd_eq_range
{X₁ X₂ : SSet}
{p q : ℕ}
(x₁ : X₁.obj (Opposite.op (SimplexCategory.mk p)))
(x₂ : X₂.obj (Opposite.op (SimplexCategory.mk q)))
:
(ofSimplex x₁).prod (ofSimplex x₂) = range (CategoryTheory.MonoidalCategoryStruct.tensorHom (yonedaEquiv.symm x₁) (yonedaEquiv.symm x₂))
theorem
SSet.hasDimensionLT_prod
(X₁ X₂ : SSet)
(d₁ d₂ : ℕ)
[X₁.HasDimensionLT d₁]
[X₂.HasDimensionLT d₂]
(n : ℕ)
(hn : d₁ + d₂ ≤ n + 1 := by lia)
:
theorem
SSet.hasDimensionLE_prod
(X₁ X₂ : SSet)
(d₁ d₂ : ℕ)
[X₁.HasDimensionLE d₁]
[X₂.HasDimensionLE d₂]
(n : ℕ)
(hn : d₁ + d₂ ≤ n := by lia)
:
instance
SSet.instHasDimensionLTTensorObjHAddNat
{X₁ X₂ : SSet}
(d₁ d₂ : ℕ)
[X₁.HasDimensionLT d₁]
[X₂.HasDimensionLT d₂]
:
(CategoryTheory.MonoidalCategoryStruct.tensorObj X₁ X₂).HasDimensionLT (d₁ + d₂)
instance
SSet.instHasDimensionLETensorObjHAddNat
{X₁ X₂ : SSet}
(d₁ d₂ : ℕ)
[X₁.HasDimensionLE d₁]
[X₂.HasDimensionLE d₂]
:
(CategoryTheory.MonoidalCategoryStruct.tensorObj X₁ X₂).HasDimensionLE (d₁ + d₂)