Documentation

Mathlib.AlgebraicTopology.SimplicialSet.FiniteProd

A binary product of finite simplicial sets is finite #

If X₁ and X₂ are respectively of dimensions ≤ d₁ and ≤ d₂, then X₁ ⊗ X₂ has dimension ≤ d₁ + d₂.

We also show that if X₁ and X₂ are finite, then X₁ ⊗ X₂ is also finite.

theorem SSet.iSup_subcomplexOfSimplex_prod_eq_top (X₁ X₂ : SSet) :
⨆ (x₁ : X₁.N), ⨆ (x₂ : X₂.N), (Subcomplex.ofSimplex x₁.simplex).prod (Subcomplex.ofSimplex x₂.simplex) =
theorem SSet.hasDimensionLT_prod (X₁ X₂ : SSet) (d₁ d₂ : ) [X₁.HasDimensionLT d₁] [X₂.HasDimensionLT d₂] (n : ) (hn : d₁ + d₂ n + 1 := by lia) :
theorem SSet.hasDimensionLE_prod (X₁ X₂ : SSet) (d₁ d₂ : ) [X₁.HasDimensionLE d₁] [X₂.HasDimensionLE d₂] (n : ) (hn : d₁ + d₂ n := by lia) :
theorem SSet.finite_of_isPullback {X₁ X₂ X₃ X₄ : SSet} {t : X₁ X₂} {l : X₁ X₃} {r : X₂ X₄} {b : X₃ X₄} (sq : CategoryTheory.IsPullback t l r b) [X₂.Finite] [X₃.Finite] :
X₁.Finite
instance SSet.instFinitePullback {X₂ X₃ X₄ : SSet} [X₂.Finite] [X₃.Finite] (r : X₂ X₄) (b : X₃ X₄) :