Documentation

Mathlib.AlgebraicTopology.SimplicialSet.NonDegenerateSimplicesSubcomplex

The type of nondegenerate simplices not in a subcomplex #

In this file, given a subcomplex A of a simplicial set X, we introduce the type A.N of nondegenerate simplices of X that are not in A.

structure SSet.Subcomplex.N {X : SSet} (A : X.Subcomplex) extends X.N :

The type of nondegenerate simplices which do not belong to a given subcomplex of a simplicial set.

Instances For
    theorem SSet.Subcomplex.N.mk'_surjective {X : SSet} {A : X.Subcomplex} (s : A.N) :
    ∃ (t : X.N) (ht : t.simplexA.obj (Opposite.op (SimplexCategory.mk t.dim))), s = { toN := t, notMem := ht }
    def SSet.Subcomplex.N.mk {X : SSet} {A : X.Subcomplex} {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) (hx : x X.nonDegenerate n) (hx' : xA.obj (Opposite.op (SimplexCategory.mk n))) :
    A.N

    Constructor for the type of nondegenerate simplices which do not belong to a given subcomplex of a simplicial set.

    Equations
    Instances For
      @[simp]
      theorem SSet.Subcomplex.N.mk_dim {X : SSet} {A : X.Subcomplex} {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) (hx : x X.nonDegenerate n) (hx' : xA.obj (Opposite.op (SimplexCategory.mk n))) :
      (mk x hx hx').dim = n
      @[simp]
      theorem SSet.Subcomplex.N.mk_simplex {X : SSet} {A : X.Subcomplex} {n : } (x : X.obj (Opposite.op (SimplexCategory.mk n))) (hx : x X.nonDegenerate n) (hx' : xA.obj (Opposite.op (SimplexCategory.mk n))) :
      (mk x hx hx').simplex = x
      theorem SSet.Subcomplex.N.mk_surjective {X : SSet} {A : X.Subcomplex} (s : A.N) :
      ∃ (n : ) (x : X.obj (Opposite.op (SimplexCategory.mk n))) (hx : x X.nonDegenerate n) (hx' : xA.obj (Opposite.op (SimplexCategory.mk n))), s = mk x hx hx'
      theorem SSet.Subcomplex.N.ext_iff {X : SSet} {A : X.Subcomplex} (x y : A.N) :
      x = y x.toN = y.toN
      @[reducible, inline]
      abbrev SSet.Subcomplex.N.cast {X : SSet} {A : X.Subcomplex} (s : A.N) {d : } (hd : s.dim = d) :
      A.N

      When A is a subcomplex of a simplicial set X, and s : A.N is such that s.dim = d, this is a term that is equal to s, but whose dimension if definitionally equal to d.

      Equations
      Instances For
        theorem SSet.Subcomplex.N.cast_eq_self {X : SSet} {A : X.Subcomplex} (s : A.N) {d : } (hd : s.dim = d) :
        s.cast hd = s