Order properties of the operator logarithm #
This file shows that the logarithm is operator monotone, i.e. that CFC.log is monotone on
the strictly positive elements of a unital C⋆-algebra.
Main declarations #
CFC.log_monotoneOn: the logarithm is operator monotone
TODO #
- Show that the log is operator concave
- Show that
x => x * log xis operator convex
theorem
CFC.tendsto_cfc_rpow_sub_one_log
{A : Type u_1}
[CStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
{a : A}
(ha : IsStrictlyPositive a := by cfc_tac)
:
theorem
CFC.log_monotoneOn
{A : Type u_1}
[CStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
:
MonotoneOn log {a : A | IsStrictlyPositive a}
log is operator monotone.
theorem
CFC.log_le_log
{A : Type u_1}
[CStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
{a b : A}
(hab : a ≤ b)
(ha : IsStrictlyPositive a := by cfc_tac)
: