Documentation

Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.ExpLog.Order

Order properties of the operator logarithm #

This file shows that the logarithm is operator monotone, i.e. that CFC.log is monotone on the strictly positive elements of a unital C⋆-algebra.

Main declarations #

TODO #

theorem CFC.tendsto_cfc_rpow_sub_one_log {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a : A} (ha : IsStrictlyPositive a := by cfc_tac) :
Filter.Tendsto (fun (p : ) => cfc (fun (x : ) => p⁻¹ * (x ^ p - 1)) a) (nhdsWithin 0 (Set.Ioi 0)) (nhds (log a))

log is operator monotone.

theorem CFC.log_le_log {A : Type u_1} [CStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {a b : A} (hab : a b) (ha : IsStrictlyPositive a := by cfc_tac) :
log a log b