Lift of ring homomorphisms to adic completions #
Let R, S be rings, I be an ideal of S.
In this file we prove that a compatible family of ring homomorphisms from a ring R to
S ⧸ I ^ n can be lifted to a ring homomorphism R →+* AdicCompletion I S.
If S is I-adically complete, then this compatible family of ring homomorphisms can be
lifted to a ring homomorphism R →+* S.
Main definitions #
IsAdicComplete.liftRingHom: ifRisI-adically complete, then a compatible family of ring mapsS →+* R ⧸ I ^ ncan be lifted to a unique ring mapS →+* R. Together withmk_liftRingHom_applyandeq_liftRingHom, it gives the universal property ofRbeingI-adically complete.
Universal property of IsAdicComplete for rings.
The lift ring map lift I f hf : R →+* S of a sequence of compatible
ring maps f n : R →+* S ⧸ (I ^ n).
Equations
- IsAdicComplete.liftRingHom I f hf = (↑(AdicCompletion.ofAlgEquiv I).symm).comp (AdicCompletion.liftRingHom I f ⋯)
Instances For
The composition of lift linear map lift I f hf : R →+* S with the canonical
projection S →+* S ⧸ (I ^ n) is f n .
Uniqueness of the lift.
Given a compatible family of linear maps f n : R →ₗ[R] S ⧸ (I ^ n).
If F : R →+* S makes the following diagram commutes
R
| \
F| \ f n
| \
v v
S --> S ⧸ (I ^ n)
Then it is the map IsAdicComplete.lift.
RingHom variant of IsAdicComplete.StrictMono.factorPow_comp_eq_of_factorPow_comp_succ_eq.
A variant of IsAdicComplete.liftRingHom. Only takes f n : R →+* S ⧸ I ^ (a n)
from a strictly increasing sequence a n.
Equations
- IsAdicComplete.StrictMono.liftRingHom I ha f hf = IsAdicComplete.liftRingHom I (fun (n : ℕ) => (Ideal.Quotient.factorPow I ⋯).comp (f n)) ⋯