Artinian rings and modules #
A module satisfying these equivalent conditions is said to be an Artinian R-module
if every decreasing chain of submodules is eventually constant, or equivalently,
if the relation <
on submodules is well founded.
A ring is said to be left (or right) Artinian if it is Artinian as a left (or right) module over itself, or simply Artinian if it is both left and right Artinian.
Main definitions #
Let R
be a ring and let M
and P
be R
-modules. Let N
be an R
-submodule of M
.
IsArtinian R M
is the proposition thatM
is an ArtinianR
-module. It is a class, implemented as the predicate that the<
relation on submodules is well founded.IsArtinianRing R
is the proposition thatR
is a left Artinian ring.
References #
- [M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra][atiyah-macdonald]
- [samuel]
Tags #
Artinian, artinian, Artinian ring, Artinian module, artinian ring, artinian module
- wellFounded_submodule_lt' : WellFounded fun x x_1 => x < x_1
IsArtinian R M
is the proposition that M
is an Artinian R
-module,
implemented as the well-foundedness of submodule inclusion.
Instances
A version of isArtinian_pi
for non-dependent functions. We need this instance because
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to
prove that ι → ℝ
is finite dimensional over ℝ
).
A module is Artinian iff every nonempty set of submodules has a minimal submodule among them.
If ∀ I > J, P I
implies P J
, then P
holds for all submodules.
For any endomorphism of an Artinian module, there is some nontrivial iterate with disjoint kernel and range.
Any injective endomorphism of an Artinian module is surjective.
Any injective endomorphism of an Artinian module is bijective.
A sequence f
of submodules of an artinian module,
with the supremum f (n+1)
and the infimum of f 0
, ..., f n
being ⊤,
is eventually ⊤.
A ring is Artinian if it is Artinian as a module over itself.
Strictly speaking, this should be called IsLeftArtinianRing
but we omit the Left
for
convenience in the commutative case. For a right Artinian ring, use IsArtinian Rᵐᵒᵖ R
.
Instances For
If M / S / R
is a scalar tower, and M / R
is Artinian, then M / S
is also Artinian.
In a module over an artinian ring, the submodule generated by finitely many vectors is artinian.
Localizing an artinian ring can only reduce the amount of elements.
IsArtinianRing.localization_artinian
can't be made an instance, as it would make S
+ R
into metavariables. However, this is safe.