Localization and multivariate polynomial rings #
In this file we show some results connecting multivariate polynomial rings and localization.
Main results #
MvPolynomial.isLocalization
: IfS
is the localization ofR
at a submonoidM
, thenMvPolynomial σ S
is the localization ofMvPolynomial σ R
at the image ofM
inMvPolynomial σ R
.
instance
MvPolynomial.isLocalization
{σ : Type u_1}
{R : Type u_2}
[CommRing R]
(M : Submonoid R)
(S : Type u_3)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
:
IsLocalization (Submonoid.map MvPolynomial.C M) (MvPolynomial σ S)
If S
is the localization of R
at a submonoid M
, then MvPolynomial σ S
is the localization of MvPolynomial σ R
at M.map MvPolynomial.C
.
theorem
MvPolynomial.isLocalization_C_mk'
{σ : Type u_1}
{R : Type u_2}
[CommRing R]
(M : Submonoid R)
(S : Type u_3)
[CommRing S]
[Algebra R S]
[IsLocalization M S]
(a : R)
(m : ↥M)
:
MvPolynomial.C (IsLocalization.mk' S a m) = IsLocalization.mk' (MvPolynomial σ S) (MvPolynomial.C a) ⟨MvPolynomial.C ↑m, ⋯⟩
noncomputable def
IsLocalization.Away.mvPolynomialQuotientEquiv
{R : Type u_2}
[CommRing R]
(S : Type u_3)
[CommRing S]
[Algebra R S]
(r : R)
[IsLocalization.Away r S]
:
(MvPolynomial Unit R ⧸ Ideal.span {MvPolynomial.C r * MvPolynomial.X () - 1}) ≃ₐ[R] S
The canonical algebra isomorphism from MvPolynomial Unit R
quotiented by
C r * X () - 1
to the localization of R
away from r
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
IsLocalization.Away.mvPolynomialQuotientEquiv_apply
{R : Type u_2}
[CommRing R]
(S : Type u_3)
[CommRing S]
[Algebra R S]
(r : R)
[IsLocalization.Away r S]
(p : MvPolynomial Unit R)
:
(IsLocalization.Away.mvPolynomialQuotientEquiv S r)
((Ideal.Quotient.mk (Ideal.span {MvPolynomial.C r * MvPolynomial.X () - 1})) p) = (MvPolynomial.aeval fun (x : Unit) => IsLocalization.Away.invSelf r) p