Smooth algebras are flat #
Let A be a smooth R-algebra. In this file we show that then A is R-flat.
The proof proceeds in two steps:
- If
Ris Noetherian, letR[X₁, ..., Xₙ] →ₐ[R] Abe surjective with kernelI. By formal smoothness we construct a sectionA →ₐ[R] AdicCompletion I R[X₁, ..., Xₙ]of the canonical mapAdicCompletion I R[X₁, ..., Xₙ] →ₐ[R] R[X₁, ..., Xₙ] ⧸ I ≃ₐ[R] A. SinceRis Noetherian,AdicCompletion I RisR-flat soAis a retract of a flatR-module and hence flat. - In the general case, we choose a model of
Aover a finitely generatedℤ-subalgebra ofRand apply 1.
References #
theorem
Algebra.FormallySmooth.flat_of_algHom_of_isNoetherianRing
{R : Type u_1}
{A : Type u_2}
{S : Type u_3}
[CommRing R]
[CommRing A]
[Algebra R A]
[CommRing S]
[Algebra R S]
(f : S →ₐ[R] A)
(hf : Function.Surjective ⇑f)
[Module.Flat R S]
[IsNoetherianRing S]
[FormallySmooth R A]
:
Module.Flat R A
instance
Algebra.Smooth.flat_of_isNoetherianRing
(R : Type u_1)
(A : Type u_2)
[CommRing R]
[CommRing A]
[Algebra R A]
[IsNoetherianRing R]
[Smooth R A]
:
Module.Flat R A
If A is R-smooth and R is Noetherian, then A is R-flat.
instance
Algebra.Smooth.flat
(R : Type u_1)
(A : Type u_2)
[CommRing R]
[CommRing A]
[Algebra R A]
[Smooth R A]
:
Module.Flat R A
Any smooth algebra is flat.