Documentation

ConNF.Strong.SMulSpec

Action on specifications #

In this file, we prove that the specification of a support is invariant under the action of allowable permutations.

Main declarations #

theorem ConNF.Support.convAtoms_smul_iff_left [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) (A : β ) (a₁ a₂ : ConNF.Atom) :
ConNF.convAtoms S (ρ S) A a₁ a₂ a₁ (S ⇘. A) a₂ = ρ A a₁
theorem ConNF.Support.convNearLitters_smul_iff_left [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) (A : β ) (N₁ N₂ : ConNF.NearLitter) :
ConNF.convNearLitters S (ρ S) A N₁ N₂ N₁ (S ⇘. A) N₂ = ρ A N₁
theorem ConNF.Support.smul_convAtoms_injective [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) (A : β ) :
(ConNF.convAtoms S (ρ S) A).Injective
theorem ConNF.Support.atomMemRel_smul_le [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) (A : β ) :
theorem ConNF.Support.inflexible_of_inflexible_smul [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) {A : β } {N₁ N₂ : ConNF.NearLitter} (h : ConNF.convNearLitters S (ρ S) A N₁ N₂) (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P) (hA : A = P.A ↘.) (hN₁ : N₁ = ConNF.fuzz t) :
∃ (ρ' : ConNF.AllPerm P), N₂ = ConNF.fuzz (ρ' t)
theorem ConNF.Support.litter_eq_of_flexible_smul [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) {A : β } {N₁ N₂ N₃ N₄ : ConNF.NearLitter} (h₁₂ : ConNF.convNearLitters S (ρ S) A N₁ N₂) (h₃₄ : ConNF.convNearLitters S (ρ S) A N₃ N₄) (h₁₃ : N₁ = N₃) :
N₂ = N₄
theorem ConNF.Support.convNearLitters_fuzz [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) (A : β ) (N₁ N₂ : ConNF.NearLitter) (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P) (ρ' : ConNF.AllPerm P) (hA : A = P.A ↘.) (hN₁ : N₁ = ConNF.fuzz t) (hN₂ : N₂ = ConNF.fuzz (ρ' t)) (hN : ConNF.convNearLitters S (ρ S) A N₁ N₂) :
ρ' t = ρ P.A t
theorem ConNF.Support.atoms_of_inflexible_smul [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) (A : β ) (N₁ N₂ : ConNF.NearLitter) (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P) (ρ' : ConNF.AllPerm P) (hA : A = P.A ↘.) (hN₁ : N₁ = ConNF.fuzz t) (hN₂ : N₂ = ConNF.fuzz (ρ' t)) (hN : ConNF.convNearLitters S (ρ S) A N₁ N₂) (B : P ) (a : ConNF.Atom) (ha : a (t.support ⇘. B)) (i : ConNF.κ) (hiS : (S ⇘. (P.A B)).rel i a) :
((ρ S) ⇘. (P.A B)).rel i (ρ' B a)
theorem ConNF.Support.nearLitters_of_inflexible_smul [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) (A : β ) (N₁ N₂ : ConNF.NearLitter) (P : ConNF.InflexiblePath β) (t : ConNF.Tangle P) (ρ' : ConNF.AllPerm P) (hA : A = P.A ↘.) (hN₁ : N₁ = ConNF.fuzz t) (hN₂ : N₂ = ConNF.fuzz (ρ' t)) (hN : ConNF.convNearLitters S (ρ S) A N₁ N₂) (B : P ) (N : ConNF.NearLitter) (ha : N (t.support ⇘. B)) (i : ConNF.κ) (hiS : (S ⇘. (P.A B)).rel i N) :
((ρ S) ⇘. (P.A B)).rel i (ρ' B N)
@[simp]
theorem ConNF.Support.sameSpecLe_smul [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) :
@[simp]
theorem ConNF.Support.smul_spec [ConNF.Params] [ConNF.Level] [ConNF.CoherentData] {β : ConNF.TypeIndex} [ConNF.LeLevel β] (S : ConNF.Support β) (ρ : ConNF.AllPerm β) :
(ρ S).spec = S.spec