Documentation

Mathlib.AlgebraicGeometry.Cover.Directed

Locally directed covers #

A locally directed P-cover of a scheme X is a cover ๐’ฐ with an ordering on the indices and compatible transition maps ๐’ฐแตข โŸถ ๐’ฐโฑผ for i โ‰ค j such that every x : ๐’ฐแตข ร—[X] ๐’ฐโฑผ comes from some ๐’ฐโ‚– for a k โ‰ค i and k โ‰ค j.

Gluing along directed covers is easier, because the intersections ๐’ฐแตข ร—[X] ๐’ฐโฑผ can be covered by a subcover of ๐’ฐ. In particular, if ๐’ฐ is a Zariski cover, X naturally is the colimit of the ๐’ฐแตข.

Many natural covers are naturally directed, most importantly the cover of all affine opens of a scheme.

A directed P-cover of a scheme X is a cover ๐’ฐ with an ordering on the indices and compatible transition maps ๐’ฐแตข โŸถ ๐’ฐโฑผ for i โ‰ค j such that every x : ๐’ฐแตข ร—[X] ๐’ฐโฑผ comes from some ๐’ฐโ‚– for a k โ‰ค i and k โ‰ค j.

Instances
    def AlgebraicGeometry.Scheme.Cover.trans {P : CategoryTheory.MorphismProperty Scheme} {X : Scheme} (๐’ฐ : Cover P X) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [๐’ฐ.LocallyDirected] {i j : ๐’ฐ.J} (hij : i โŸถ j) :
    ๐’ฐ.obj i โŸถ ๐’ฐ.obj j

    The transition maps of a directed cover.

    Equations
    Instances For
      @[simp]
      theorem AlgebraicGeometry.Scheme.Cover.trans_map {P : CategoryTheory.MorphismProperty Scheme} {X : Scheme} (๐’ฐ : Cover P X) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [๐’ฐ.LocallyDirected] {i j : ๐’ฐ.J} (hij : i โŸถ j) :
      CategoryTheory.CategoryStruct.comp (๐’ฐ.trans hij) (๐’ฐ.map j) = ๐’ฐ.map i
      @[simp]
      theorem AlgebraicGeometry.Scheme.Cover.trans_comp {P : CategoryTheory.MorphismProperty Scheme} {X : Scheme} (๐’ฐ : Cover P X) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [๐’ฐ.LocallyDirected] {i j k : ๐’ฐ.J} (hij : i โŸถ j) (hjk : j โŸถ k) :
      ๐’ฐ.trans (CategoryTheory.CategoryStruct.comp hij hjk) = CategoryTheory.CategoryStruct.comp (๐’ฐ.trans hij) (๐’ฐ.trans hjk)
      theorem AlgebraicGeometry.Scheme.Cover.exists_lift_trans_eq {P : CategoryTheory.MorphismProperty Scheme} {X : Scheme} (๐’ฐ : Cover P X) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [๐’ฐ.LocallyDirected] {i j : ๐’ฐ.J} (x : โ†ฅ(CategoryTheory.Limits.pullback (๐’ฐ.map i) (๐’ฐ.map j))) :
      โˆƒ (k : ๐’ฐ.J) (hki : k โŸถ i) (hkj : k โŸถ j) (y : โ†ฅ(๐’ฐ.obj k)), (CategoryTheory.ConcreteCategory.hom (CategoryTheory.Limits.pullback.lift (๐’ฐ.trans hki) (๐’ฐ.trans hkj) โ‹ฏ).base) y = x
      theorem AlgebraicGeometry.Scheme.Cover.property_trans {P : CategoryTheory.MorphismProperty Scheme} {X : Scheme} (๐’ฐ : Cover P X) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [๐’ฐ.LocallyDirected] {i j : ๐’ฐ.J} (hij : i โŸถ j) :
      P (๐’ฐ.trans hij)

      If ๐’ฐ is a directed cover of X, this is the cover of ๐’ฐแตข ร—[X] ๐’ฐโฑผ by {๐’ฐโ‚–} where k โ‰ค i and k โ‰ค j.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_map {P : CategoryTheory.MorphismProperty Scheme} {X : Scheme} (๐’ฐ : Cover P X) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [๐’ฐ.LocallyDirected] [P.IsStableUnderBaseChange] [P.HasOfPostcompProperty P] (i j : ๐’ฐ.J) (k : (k : ๐’ฐ.J) ร— (k โŸถ i) ร— (k โŸถ j)) :
        (๐’ฐ.intersectionOfLocallyDirected i j).map k = CategoryTheory.Limits.pullback.lift (๐’ฐ.trans k.snd.1) (๐’ฐ.trans k.snd.2) โ‹ฏ

        The canonical diagram induced by a locally directed cover.

        Equations
        Instances For
          @[simp]
          theorem AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirected_map {P : CategoryTheory.MorphismProperty Scheme} {X : Scheme} (๐’ฐ : Cover P X) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [๐’ฐ.LocallyDirected] {Xโœ Yโœ : ๐’ฐ.J} (hij : Xโœ โŸถ Yโœ) :
          ๐’ฐ.functorOfLocallyDirected.map hij = ๐’ฐ.trans hij

          The canonical cocone with point X on the functor induced by the locally directed cover ๐’ฐ. If ๐’ฐ is an open cover, this is colimiting (see OpenCover.isColimitCoconeOfLocallyDirected).

          Equations
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            def AlgebraicGeometry.Scheme.OpenCover.glueMorphismsOfLocallyDirected {X : Scheme} (๐’ฐ : X.OpenCover) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [Cover.LocallyDirected ๐’ฐ] {Y : Scheme} (g : (i : ๐’ฐ.J) โ†’ ๐’ฐ.obj i โŸถ Y) (h : โˆ€ {i j : ๐’ฐ.J} (hij : i โŸถ j), CategoryTheory.CategoryStruct.comp (Cover.trans ๐’ฐ hij) (g j) = g i) :

            If ๐’ฐ is a directed open cover of X, to glue morphisms {gแตข : ๐’ฐแตข โŸถ Y} it suffices to check compatibility with the transition maps. See OpenCover.isColimitCoconeOfLocallyDirected for this result stated in the language of colimits.

            Equations
            Instances For
              @[simp]
              theorem AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOfLocallyDirected {X : Scheme} (๐’ฐ : X.OpenCover) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [Cover.LocallyDirected ๐’ฐ] {Y : Scheme} (g : (i : ๐’ฐ.J) โ†’ ๐’ฐ.obj i โŸถ Y) (h : โˆ€ {i j : ๐’ฐ.J} (hij : i โŸถ j), CategoryTheory.CategoryStruct.comp (Cover.trans ๐’ฐ hij) (g j) = g i) (i : ๐’ฐ.J) :
              CategoryTheory.CategoryStruct.comp (๐’ฐ.map i) (๐’ฐ.glueMorphismsOfLocallyDirected g โ‹ฏ) = g i
              @[simp]
              theorem AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOfLocallyDirected_assoc {X : Scheme} (๐’ฐ : X.OpenCover) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [Cover.LocallyDirected ๐’ฐ] {Y : Scheme} (g : (i : ๐’ฐ.J) โ†’ ๐’ฐ.obj i โŸถ Y) (h : โˆ€ {i j : ๐’ฐ.J} (hij : i โŸถ j), CategoryTheory.CategoryStruct.comp (Cover.trans ๐’ฐ hij) (g j) = g i) (i : ๐’ฐ.J) {Z : Scheme} (hโœ : Y โŸถ Z) :

              If ๐’ฐ is an open cover of X that is locally directed, X is the colimit of the components of ๐’ฐ.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def AlgebraicGeometry.Scheme.OpenCover.glueMorphismsOverOfLocallyDirected {S : Scheme} {X : CategoryTheory.Over S} (๐’ฐ : X.left.OpenCover) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [Cover.LocallyDirected ๐’ฐ] {Y : CategoryTheory.Over S} (g : (i : ๐’ฐ.J) โ†’ ๐’ฐ.obj i โŸถ Y.left) (h : โˆ€ {i j : ๐’ฐ.J} (hij : i โŸถ j), CategoryTheory.CategoryStruct.comp (Cover.trans ๐’ฐ hij) (g j) = g i) (w : โˆ€ (i : ๐’ฐ.J), CategoryTheory.CategoryStruct.comp (g i) Y.hom = CategoryTheory.CategoryStruct.comp (๐’ฐ.map i) X.hom) :

                If ๐’ฐ is a directed open cover of X, to glue morphisms {gแตข : ๐’ฐแตข โŸถ Y} over S it suffices to check compatibility with the transition maps.

                Equations
                Instances For
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOverOfLocallyDirected_left {S : Scheme} {X : CategoryTheory.Over S} (๐’ฐ : X.left.OpenCover) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [Cover.LocallyDirected ๐’ฐ] {Y : CategoryTheory.Over S} (g : (i : ๐’ฐ.J) โ†’ ๐’ฐ.obj i โŸถ Y.left) (h : โˆ€ {i j : ๐’ฐ.J} (hij : i โŸถ j), CategoryTheory.CategoryStruct.comp (Cover.trans ๐’ฐ hij) (g j) = g i) (w : โˆ€ (i : ๐’ฐ.J), CategoryTheory.CategoryStruct.comp (g i) Y.hom = CategoryTheory.CategoryStruct.comp (๐’ฐ.map i) X.hom) (i : ๐’ฐ.J) :
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOverOfLocallyDirected_left_assoc {S : Scheme} {X : CategoryTheory.Over S} (๐’ฐ : X.left.OpenCover) [CategoryTheory.Category.{u_2, u_1} ๐’ฐ.J] [Cover.LocallyDirected ๐’ฐ] {Y : CategoryTheory.Over S} (g : (i : ๐’ฐ.J) โ†’ ๐’ฐ.obj i โŸถ Y.left) (h : โˆ€ {i j : ๐’ฐ.J} (hij : i โŸถ j), CategoryTheory.CategoryStruct.comp (Cover.trans ๐’ฐ hij) (g j) = g i) (w : โˆ€ (i : ๐’ฐ.J), CategoryTheory.CategoryStruct.comp (g i) Y.hom = CategoryTheory.CategoryStruct.comp (๐’ฐ.map i) X.hom) (i : ๐’ฐ.J) {Z : Scheme} (hโœ : Y.left โŸถ Z) :
                  def AlgebraicGeometry.Scheme.Cover.LocallyDirected.ofIsBasisOpensRange {X : Scheme} {๐’ฐ : X.OpenCover} [Preorder ๐’ฐ.J] (hle : โˆ€ {i j : ๐’ฐ.J}, i โ‰ค j โ†” Hom.opensRange (๐’ฐ.map i) โ‰ค Hom.opensRange (๐’ฐ.map j)) (H : TopologicalSpace.Opens.IsBasis (Set.range fun (i : ๐’ฐ.J) => Hom.opensRange (๐’ฐ.map i))) :
                  LocallyDirected ๐’ฐ

                  If ๐’ฐ is an open cover such that the images of the components form a basis of the topology of X, ๐’ฐ is directed by the ordering of subset inclusion of the images.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem AlgebraicGeometry.Scheme.Cover.LocallyDirected.ofIsBasisOpensRange_le_iff {X : Scheme} {๐’ฐ : X.OpenCover} [Preorder ๐’ฐ.J] (hle : โˆ€ {i j : ๐’ฐ.J}, i โ‰ค j โ†” Hom.opensRange (๐’ฐ.map i) โ‰ค Hom.opensRange (๐’ฐ.map j)) (i j : ๐’ฐ.J) :
                    i โ‰ค j โ†” Hom.opensRange (๐’ฐ.map i) โ‰ค Hom.opensRange (๐’ฐ.map j)
                    theorem AlgebraicGeometry.Scheme.Cover.LocallyDirected.ofIsBasisOpensRange_trans {X : Scheme} {๐’ฐ : X.OpenCover} [Preorder ๐’ฐ.J] (hle : โˆ€ {i j : ๐’ฐ.J}, i โ‰ค j โ†” Hom.opensRange (๐’ฐ.map i) โ‰ค Hom.opensRange (๐’ฐ.map j)) (H : TopologicalSpace.Opens.IsBasis (Set.range fun (i : ๐’ฐ.J) => Hom.opensRange (๐’ฐ.map i))) {i j : ๐’ฐ.J} (hij : i โ‰ค j) :
                    Cover.trans ๐’ฐ (CategoryTheory.homOfLE hij) = IsOpenImmersion.lift (๐’ฐ.map j) (๐’ฐ.map i) โ‹ฏ

                    The directed affine open cover of X given by all affine opens.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]