Π Rᵢ
-Points of Schemes #
We show that the canonical map X(Π Rᵢ) ⟶ Π X(Rᵢ)
(AlgebraicGeometry.pointsPi
)
is injective and surjective under various assumptions
theorem
AlgebraicGeometry.Ideal.span_eq_top_of_span_image_evalRingHom
{ι : Type u_2}
{R : ι → Type u_1}
[(i : ι) → CommRing (R i)]
(s : Set ((i : ι) → R i))
(hs : s.Finite)
(hs' : ∀ (i : ι), Ideal.span (⇑(Pi.evalRingHom (fun (x : ι) => R x) i) '' s) = ⊤)
:
theorem
AlgebraicGeometry.eq_top_of_sigmaSpec_subset_of_isCompact
{ι : Type u}
(R : ι → CommRingCat)
(U : (Spec (CommRingCat.of ((i : ι) → ↑(R i)))).Opens)
(V : Set ↑↑(Spec (CommRingCat.of ((i : ι) → ↑(R i)))).toPresheafedSpace)
(hV : ↑(Scheme.Hom.opensRange (sigmaSpec R)) ⊆ V)
(hV' : IsCompact V)
(hVU : V ⊆ ↑U)
:
theorem
AlgebraicGeometry.eq_bot_of_comp_quotientMk_eq_sigmaSpec
{ι : Type u}
(R : ι → CommRingCat)
(I : Ideal ((i : ι) → ↑(R i)))
(f : (∐ fun (i : ι) => Spec (R i)) ⟶ Spec (CommRingCat.of (((i : ι) → ↑(R i)) ⧸ I)))
(hf : CategoryTheory.CategoryStruct.comp f (Spec.map (CommRingCat.ofHom (Ideal.Quotient.mk I))) = sigmaSpec R)
:
theorem
AlgebraicGeometry.isIso_of_comp_eq_sigmaSpec
{ι : Type u}
(R : ι → CommRingCat)
{V : Scheme}
(f : (∐ fun (i : ι) => Spec (R i)) ⟶ V)
(g : V ⟶ Spec (CommRingCat.of ((i : ι) → ↑(R i))))
[IsImmersion g]
[CompactSpace ↑↑V.toPresheafedSpace]
(hU' : CategoryTheory.CategoryStruct.comp f g = sigmaSpec R)
:
If V
is a locally closed subscheme of Spec (Π Rᵢ)
containing ∐ Spec Rᵢ
, then
V = Spec (Π Rᵢ)
.
noncomputable def
AlgebraicGeometry.pointsPi
{ι : Type u}
(R : ι → CommRingCat)
(X : Scheme)
:
(Spec (CommRingCat.of ((i : ι) → ↑(R i))) ⟶ X) → (i : ι) → Spec (R i) ⟶ X
The canonical map X(Π Rᵢ) ⟶ Π X(Rᵢ)
.
This is injective if X
is quasi-separated, surjective if X
is affine,
or if X
is compact and each Rᵢ
is local.
Equations
- AlgebraicGeometry.pointsPi R X f i = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Spec.map (CommRingCat.ofHom (Pi.evalRingHom (fun (x : ι) => ↑(R x)) i))) f
Instances For
theorem
AlgebraicGeometry.pointsPi_injective
{ι : Type u}
(R : ι → CommRingCat)
(X : Scheme)
[QuasiSeparatedSpace ↑↑X.toPresheafedSpace]
:
Function.Injective (pointsPi R X)
theorem
AlgebraicGeometry.pointsPi_surjective_of_isAffine
{ι : Type u}
(R : ι → CommRingCat)
(X : Scheme)
[IsAffine X]
:
Function.Surjective (pointsPi R X)
theorem
AlgebraicGeometry.pointsPi_surjective
{ι : Type u}
(R : ι → CommRingCat)
(X : Scheme)
[CompactSpace ↑↑X.toPresheafedSpace]
[∀ (i : ι), IsLocalRing ↑(R i)]
:
Function.Surjective (pointsPi R X)