Documentation

Mathlib.AlgebraicGeometry.PointsPi

Π Rᵢ-Points of Schemes #

We show that the canonical map X(Π Rᵢ) ⟶ Π X(Rᵢ) (AlgebraicGeometry.pointsPi) is injective and surjective under various assumptions

theorem AlgebraicGeometry.Ideal.span_eq_top_of_span_image_evalRingHom {ι : Type u_2} {R : ιType u_1} [(i : ι) → CommRing (R i)] (s : Set ((i : ι) → R i)) (hs : s.Finite) (hs' : ∀ (i : ι), Ideal.span ((Pi.evalRingHom (fun (x : ι) => R x) i) '' s) = ) :
theorem AlgebraicGeometry.eq_top_of_sigmaSpec_subset_of_isCompact {ι : Type u} (R : ιCommRingCat) (U : (Spec (CommRingCat.of ((i : ι) → (R i)))).Opens) (V : Set (Spec (CommRingCat.of ((i : ι) → (R i)))).toPresheafedSpace) (hV : (Scheme.Hom.opensRange (sigmaSpec R)) V) (hV' : IsCompact V) (hVU : V U) :
U =
theorem AlgebraicGeometry.eq_bot_of_comp_quotientMk_eq_sigmaSpec {ι : Type u} (R : ιCommRingCat) (I : Ideal ((i : ι) → (R i))) (f : ( fun (i : ι) => Spec (R i)) Spec (CommRingCat.of (((i : ι) → (R i)) I))) (hf : CategoryTheory.CategoryStruct.comp f (Spec.map (CommRingCat.ofHom (Ideal.Quotient.mk I))) = sigmaSpec R) :
I =
theorem AlgebraicGeometry.isIso_of_comp_eq_sigmaSpec {ι : Type u} (R : ιCommRingCat) {V : Scheme} (f : ( fun (i : ι) => Spec (R i)) V) (g : V Spec (CommRingCat.of ((i : ι) → (R i)))) [IsImmersion g] [CompactSpace V.toPresheafedSpace] (hU' : CategoryTheory.CategoryStruct.comp f g = sigmaSpec R) :

If V is a locally closed subscheme of Spec (Π Rᵢ) containing ∐ Spec Rᵢ, then V = Spec (Π Rᵢ).

noncomputable def AlgebraicGeometry.pointsPi {ι : Type u} (R : ιCommRingCat) (X : Scheme) :
(Spec (CommRingCat.of ((i : ι) → (R i))) X) → (i : ι) → Spec (R i) X

The canonical map X(Π Rᵢ) ⟶ Π X(Rᵢ). This is injective if X is quasi-separated, surjective if X is affine, or if X is compact and each Rᵢ is local.

Equations
Instances For