Documentation

Mathlib.AlgebraicGeometry.Limits

(Co)Limits of Schemes #

We construct various limits and colimits in the category of schemes.

TODO #

Spec ℤ is the terminal object in the category of schemes.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Spec ℤ is the terminal object in the category of schemes.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def AlgebraicGeometry.Scheme.emptyTo (X : Scheme) :

      The map from the empty scheme.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem AlgebraicGeometry.Scheme.emptyTo_base (X : Scheme) :
        X.emptyTo.base = TopCat.ofHom { toFun := fun (x : PEmpty.{u + 1}) => x.elim, continuous_toFun := }
        Equations

        The empty scheme is the initial object in the category of schemes.

        Equations
        Instances For

          Spec 0 is the initial object in the category of schemes.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            (Implementation Detail) The glue data associated to a disjoint union.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem AlgebraicGeometry.disjointGlueData'_t' {ι : Type u} (f : ιScheme) (x✝ x✝¹ x✝² : ι) (x✝³ : x✝ x✝¹) (x✝⁴ : x✝ x✝²) (x✝⁵ : x✝¹ x✝²) :
              (disjointGlueData' f).t' x✝ x✝¹ x✝² x✝³ x✝⁴ x✝⁵ = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst ((fun (x x_1 : ι) (x_2 : x x_1) => (f x).emptyTo) x✝ x✝¹ x✝³) ((fun (x x_1 : ι) (x_2 : x x_1) => (f x).emptyTo) x✝ x✝² x✝⁴)) (CategoryTheory.Limits.pullback ((fun (x x_1 : ι) (x_2 : x x_1) => (f x).emptyTo) x✝¹ x✝² x✝⁵) ((fun (x x_1 : ι) (x_2 : x x_1) => (f x).emptyTo) x✝¹ x✝ )).emptyTo
              @[simp]
              theorem AlgebraicGeometry.disjointGlueData'_f {ι : Type u} (f : ιScheme) (x✝ x✝¹ : ι) (x✝² : x✝ x✝¹) :
              (disjointGlueData' f).f x✝ x✝¹ x✝² = (f x✝).emptyTo
              @[simp]
              theorem AlgebraicGeometry.disjointGlueData'_V {ι : Type u} (f : ιScheme) (x✝ x✝¹ : ι) (x✝² : x✝ x✝¹) :
              (disjointGlueData' f).V x✝ x✝¹ x✝² =
              @[simp]
              @[simp]
              theorem AlgebraicGeometry.disjointGlueData'_U {ι : Type u} (f : ιScheme) (a✝ : ι) :
              (disjointGlueData' f).U a✝ = f a✝
              @[simp]
              theorem AlgebraicGeometry.disjointGlueData'_t {ι : Type u} (f : ιScheme) (x✝ x✝¹ : ι) (x✝² : x✝ x✝¹) :
              (disjointGlueData' f).t x✝ x✝¹ x✝² = CategoryTheory.CategoryStruct.id ((fun (x x_1 : ι) (x : x x_1) => ) x✝ x✝¹ x✝²)
              noncomputable def AlgebraicGeometry.disjointGlueData {ι : Type u} (f : ιScheme) :

              (Implementation Detail) The glue data associated to a disjoint union.

              Equations
              Instances For
                @[simp]
                theorem AlgebraicGeometry.disjointGlueData_V {ι : Type u} (f : ιScheme) (ij : (disjointGlueData' f).J × (disjointGlueData' f).J) :
                (disjointGlueData f).V ij = if ij.1 = ij.2 then f ij.1 else
                @[simp]
                theorem AlgebraicGeometry.disjointGlueData_U {ι : Type u} (f : ιScheme) (a✝ : (disjointGlueData' f).J) :
                (disjointGlueData f).U a✝ = f a✝
                @[simp]
                theorem AlgebraicGeometry.disjointGlueData_t {ι : Type u} (f : ιScheme) (i j : (disjointGlueData' f).J) :
                (disjointGlueData f).t i j = if h : i = j then CategoryTheory.eqToHom else CategoryTheory.eqToHom
                @[simp]
                theorem AlgebraicGeometry.disjointGlueData_J {ι : Type u} (f : ιScheme) :
                @[simp]
                theorem AlgebraicGeometry.disjointGlueData_f {ι : Type u} (f : ιScheme) (i j : (disjointGlueData' f).J) :

                (Implementation Detail) The cofan in LocallyRingedSpace associated to a disjoint union.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  (Implementation Detail) The cofan in LocallyRingedSpace associated to a disjoint union is a colimit.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    noncomputable def AlgebraicGeometry.sigmaIsoGlued {ι : Type u} (f : ιScheme) :

                    (Implementation Detail) Coproduct of schemes is isomorphic to the disjoint union.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      The images of each component in the coproduct is disjoint.

                      noncomputable def AlgebraicGeometry.sigmaOpenCover {σ : Type v} (g : σScheme) [Small.{u, v} σ] :

                      The open cover of the coproduct.

                      Equations
                      Instances For
                        @[simp]
                        theorem AlgebraicGeometry.sigmaOpenCover_obj {σ : Type v} (g : σScheme) [Small.{u, v} σ] (a✝ : σ) :
                        (sigmaOpenCover g).obj a✝ = g a✝
                        noncomputable def AlgebraicGeometry.sigmaMk {ι : Type u} (f : ιScheme) :
                        (i : ι) × (f i).toPresheafedSpace ≃ₜ ( f).toPresheafedSpace

                        The underlying topological space of the coproduct is homeomorphic to the disjoint union.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem AlgebraicGeometry.sigmaMk_mk {ι : Type u} (f : ιScheme) (i : ι) (x : (f i).toPresheafedSpace) :
                          theorem AlgebraicGeometry.isOpenImmersion_sigmaDesc {σ : Type v} (g : σScheme) [Small.{u, v} σ] {X : Scheme} (α : (i : σ) → g i X) [∀ (i : σ), IsOpenImmersion (α i)] ( : Pairwise (Function.onFun Disjoint fun (x : σ) => Set.range (CategoryTheory.ConcreteCategory.hom (α x).base))) :
                          theorem AlgebraicGeometry.nonempty_isColimit_cofanMk_of {σ : Type v} [Small.{u, v} σ] {X : σScheme} {S : Scheme} (f : (i : σ) → X i S) [∀ (i : σ), IsOpenImmersion (f i)] (hcov : ⨆ (i : σ), Scheme.Hom.opensRange (f i) = ) (hdisj : Pairwise (Function.onFun Disjoint fun (x : σ) => Scheme.Hom.opensRange (f x))) :

                          S is the disjoint union of Xᵢ if the Xᵢ are covering, pairwise disjoint open subschemes of S.

                          (Implementation Detail) The coproduct of the two schemes is given by indexed coproducts over WalkingPair.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            The underlying topological space of the coproduct is homeomorphic to the disjoint union

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              noncomputable def AlgebraicGeometry.coprodOpenCover (X Y : Scheme) :

                              The open cover of the coproduct of two schemes.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                If X and Y are open disjoint and covering open subschemes of S, S is the disjoint union of X and Y.

                                The map Spec R ⨿ Spec S ⟶ Spec (R × S). This is an isomorphism as witnessed by an IsIso instance provided below.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  noncomputable def AlgebraicGeometry.sigmaSpec {ι : Type u} (R : ιCommRingCat) :
                                  ( fun (i : ι) => Spec (R i)) Spec (CommRingCat.of ((i : ι) → (R i)))

                                  The canonical map ∐ Spec Rᵢ ⟶ Spec (Π Rᵢ). This is an isomorphism when the product is finite.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem AlgebraicGeometry.ι_sigmaSpec {ι : Type u} (R : ιCommRingCat) (i : ι) :
                                    instance AlgebraicGeometry.instIsOpenImmersionMapOfHomForallEvalRingHom {ι : Type u} (i : ι) (R : ιType (max u_1 u)) [(i : ι) → CommRing (R i)] :
                                    instance AlgebraicGeometry.instIsAffineSigmaObjSchemeOfFinite {ι : Type u} (f : ιScheme) [Finite ι] [∀ (i : ι), IsAffine (f i)] :